Peripherally derived macrophages infiltrate the brain after bone marrow transplantation and during central nervous system (CNS) inflammation. It was initially suggested that these engrafting cells were newly derived microglia and that irradiation was essential for engraftment to occur. However, it remains unclear whether brain-engrafting macrophages (beMfs) acquire a unique phenotype in the brain, whether long-term engraftment may occur without irradiation, and whether brain function is affected by the engrafted cells. In this study, we demonstrate that chronic, partial microglia depletion is sufficient for beMfs to populate the niche and that the presence of beMfs does not alter behavior. Furthermore, beMfs maintain a unique functional and transcriptional identity as compared with microglia. Overall, this study establishes beMfs as a unique CNS cell type and demonstrates that therapeutic engraftment of beMfs may be possible with irradiation-free conditioning regimens. Overall design: Microglia were isolated from the brains of adult male c57BL/6 mice given bone marrow tranplants (BMT) with or without head shield. All mice received PLX5622 for 2 weeks, then placed and normal chow to recoever. Some mice were then challenged with LPS. Cells were isolated by MACS using CD11b magnetic beads.
Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia.
Age, Specimen part, Cell line, Treatment, Subject
View SamplesThis dataset describe the transcriptomic profiling of cecum, stomach and ileum from wild type, cdx2 conditional knock out and cdx2 ; apc deficient mice, by mRNA-seq. Each condition was analyzed in triplicated experiment to analyze the role of cdx2 in colorectal cancer susceptibilities Overall design: Biological samples from dissected tissue were tested by RNASeq in triplicates resulting into a total of 24 samples.
The Cdx2 homeobox gene suppresses intestinal tumorigenesis through non-cell-autonomous mechanisms.
Specimen part, Treatment, Subject
View SamplesPeripherally derived macrophages infiltrate the brain after bone marrow transplantation and during central nervous system (CNS) inflammation. It was initially suggested that these engrafting cells were newly derived microglia and that irradiation was essential for engraftment to occur. However, it remains unclear whether brain-engrafting macrophages (beMfs) acquire a unique phenotype in the brain, whether long-term engraftment may occur without irradiation, and whether brain function is affected by the engrafted cells. In this study, we demonstrate that chronic, partial microglia depletion is sufficient for beMfs to populate the niche and that the presence of beMfs does not alter behavior. Furthermore, beMfs maintain a unique functional and transcriptional identity as compared with microglia. Overall, this study establishes beMfs as a unique CNS cell type and demonstrates that therapeutic engraftment of beMfs may be possible with irradiation-free conditioning regimens. Overall design: Mice were given 1000rad whole body irradiation, followed by bone marrow transplant with UBC-GFP bone marrow at 8 weeks of age. Engraftment was allowed to occur for 8 months, then engrafting macrophages and microglia were isolated from whole brains for RNA-Seq.
Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia.
Age, Specimen part, Cell line, Subject
View SamplesThe aim of this experiment was to investigate differential gene expression in splenocytes stimulated with BCG from nave and BCG vaccinated mice. The differences between nave and BCG vaccinated mice might indicate the mechanisms by which BCG vaccination confers an enhanced ability of splenocytes from BCG vaccinated mice to inhibit growth of BCG in splenocyte cultures as compared with splenocytes from naive animals.
Mycobacterial growth inhibition in murine splenocytes as a surrogate for protection against Mycobacterium tuberculosis (M. tb).
Sex, Age, Specimen part
View SamplesOligodendrocytes undergo extensive changes as they differentiate from progenitors into myelinating cells. To better understand the
Identification of a novel oligodendrocyte cell adhesion protein using gene expression profiling.
No sample metadata fields
View SamplesCortical development is a complex process involving the generation of neuronal progenitors, which proliferate and migrate to form the stratified layers of the maturing cortex. To identify microRNAs (miRNAs) and genes that may be important during early cortical development, we analyzed the expression profiles of rat neuronal progenitors obtained at embryonic day 11 (E11), E12 and E13 using microarrays. Neuronal progenitors were purified from telencephalic dissociates with a positive-selection strategy using surface labeling tetanus-toxin and cholera-toxin and fluorescence-activated cell sorting. We identified classes of miRNAs and mRNAs that were up-regulated or down-regulated in these neuronal progenitors as cortical development progressed from E11 to E13. We present data that supports a regulatory role for miRNAs during the transition from neuronal progenitors into differentiating cortical neurons.
Integrating microRNA and mRNA expression profiles of neuronal progenitors to identify regulatory networks underlying the onset of cortical neurogenesis.
No sample metadata fields
View SamplesRaw expression values (CHP data) for transcriptional profiling of the response of Saccharomyces cerevisiae to challenges with lactic acid at pH 3 and pH 5.
Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae.
No sample metadata fields
View SamplesTransient expression of two factors, or from Oct4 alone, resulted in efficient generation of human iPSCs. The reprogramming strategy described revealed a potential transcriptional signature for human iPSCs yet retaining the gene expression of donor cells in human reprogrammed cells free of viral and transgene interference.
Transcriptional signature and memory retention of human-induced pluripotent stem cells.
Sex, Specimen part
View SamplesThe irreversible decarboxylation step, which commits 2-oxo acids to the Ehrlich pathway, was initially attributed to pyruvate decarboxylase. However, the yeast genome was shown to harbour no fewer than 5 genes that show sequence similarity with thiamine-diphosphate dependent decarboxylase genes. Three of these (PDC1, PDC5 and PDC6) encode pyruvate decarboxylases { while ARO10 and THI3 represent alternative candidates for Ehrlich-pathway decarboxylases.
The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism.
No sample metadata fields
View SamplesHuman medulloblastoma (MB) can be segregated into four major categories based on gene expression patterns: Hedgehog (HH) subtype, Wnt subtype, Group 3, and Group 4. However, they all exhibit strikingly different gene expression profiles from Atypical Teratoid/Rhabdoid Tumor (AT/RT). We re-analyzed published gene expression microarray dataset of pediatric brain tumors to identify a gene expression profile that clearly distinguished human AT/RT from human MB. We used this profile, choosing only genes that have clear murine orthologs, to compare tumors from Snf5F/Fp53L/LGFAP-Cre mice (in C57Bl/6 strain background) with MB from Ptc1+/- mice (in mixed C57Bl/6 and 129Sv strain background). Snf5F/Fp53L/LGFAP-Cre tumors are clearly very different from mouse MB and the markers that distinguish human AT/RT from human MB also distinguish the mouse tumors.
Generation of a mouse model of atypical teratoid/rhabdoid tumor of the central nervous system through combined deletion of Snf5 and p53.
No sample metadata fields
View Samples