This SuperSeries is composed of the SubSeries listed below.
Systems biology of vaccination for seasonal influenza in humans.
Specimen part, Subject, Time
View SamplesSystems vaccinology has emerged as an interdisciplinary field that combines systems wide measurements and network and predictive modeling applied to vaccinology.
Systems biology of vaccination for seasonal influenza in humans.
Specimen part, Subject, Time
View SamplesSystems vaccinology has emerged as an interdisciplinary field that combines systems wide measurements and network and predictive modeling applied to vaccinology.
Systems biology of vaccination for seasonal influenza in humans.
Specimen part, Subject, Time
View SamplesSystems vaccinology has emerged as an interdisciplinary field that combines systems wide measurements and network and predictive modeling applied to vaccinology.
Systems biology of vaccination for seasonal influenza in humans.
Specimen part, Subject, Time
View SamplesSystems vaccinology has emerged as an interdisciplinary field that combines systems wide measurements and network and predictive modeling applied to vaccinology.
Systems biology of vaccination for seasonal influenza in humans.
Specimen part, Subject, Time
View SamplesRaw expression values (CHP data) for transcriptional profiling of the response of Saccharomyces cerevisiae to challenges with lactic acid at pH 3 and pH 5.
Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae.
No sample metadata fields
View SamplesThe irreversible decarboxylation step, which commits 2-oxo acids to the Ehrlich pathway, was initially attributed to pyruvate decarboxylase. However, the yeast genome was shown to harbour no fewer than 5 genes that show sequence similarity with thiamine-diphosphate dependent decarboxylase genes. Three of these (PDC1, PDC5 and PDC6) encode pyruvate decarboxylases { while ARO10 and THI3 represent alternative candidates for Ehrlich-pathway decarboxylases.
The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism.
No sample metadata fields
View SamplesThis dataset describe the transcriptomic profiling of cecum, stomach and ileum from wild type, cdx2 conditional knock out and cdx2 ; apc deficient mice, by mRNA-seq. Each condition was analyzed in triplicated experiment to analyze the role of cdx2 in colorectal cancer susceptibilities Overall design: Biological samples from dissected tissue were tested by RNASeq in triplicates resulting into a total of 24 samples.
The Cdx2 homeobox gene suppresses intestinal tumorigenesis through non-cell-autonomous mechanisms.
Specimen part, Treatment, Subject
View SamplesSucrose is a major carbon source for industrial bioethanol production by Saccharomyces cerevisiae. In yeasts, two modes of sucrose metabolism occur: (i) extracellular hydrolysis by invertase, followed by uptake and metabolism of glucose and fructose, and (ii) uptake via sucrose-H+ symport followed by intracellular hydrolysis and metabolism. Although alternative start codons in the SUC2 gene enable synthesis of extracellular and intracellular invertase isoforms, sucrose hydrolysis in S. cerevisiae predominantly occurs extracellularly. In anaerobic cultures, intracellular hydrolysis theoretically enables a 9 % higher ethanol yield than extracellular hydrolysis, due to energy costs of sucrose-proton symport. This prediction was tested by engineering the promoter and 5 coding sequences of SUC2, resulting in relocation of invertase to the cytosol. In anaerobic sucrose-limited chemostats, this iSUC2-strain showed an only 4% increased ethanol yield and high residual sucrose concentrations indicated suboptimal sucrose-transport kinetics. To improve sucrose-uptake affinity, it was subjected to 95 generations of anaerobic, sucrose-limited chemostat cultivation, resulting in a 20-fold decrease of residual sucrose concentrations and a 10-fold increase of the sucrose-transport capacity. A single-cell isolate showed an 11 % higher ethanol yield on sucrose in chemostat and batch cultures than an isogenic SUC2 reference strain, while transcriptome analysis revealed elevated expression of AGT1, encoding a disaccharide-proton symporter, and other maltose-related genes. Deletion of AGT1, which had been duplicated during laboratory evolution, restored the growth characteristics of the unevolved iSUC2 strain. This study demonstrates that engineering the topology of sucrose metabolism is an attractive strategy to improve ethanol yields in industrial processes.
Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase.
No sample metadata fields
View SamplesRaw expression values (CHP data) for transcriptional profiling of the response of Saccharomyces cerevisiae to challenges with various weak organic acids
Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae.
No sample metadata fields
View Samples