Transcriptomes of circulating monocytes in Q fever fatigue syndrome (QFS) patients, chronic fatigue syndrome (CFS) patients, asymptomatic Q fever seropositive controls and healthy controls Overall design: Circulating monocytes from QFS patinets, CFS patients, asymptomatic Q fever seropositive controls and healthy controls were isolated from PBMCs by menas of Percoll
A possible role for mitochondrial-derived peptides humanin and MOTS-c in patients with Q fever fatigue syndrome and chronic fatigue syndrome.
Specimen part, Disease stage, Subject
View SamplesABSTRACT: Furin is a proprotein convertase (PC) responsible for proteolytic activation of a wide array of precursor proteins within the secretory pathway. It maps to the PRC1 locus, a type 2 diabetes susceptibility locus, yet its specific role in pancreatic β cells is largely unknown. The aim of this study was to determine the role of furin in glucose homeostasis. We show that furin is highly expressed in human islets, while PCs that potentially could provide redundancy are expressed at considerably lower levels. β cell-specific furin knockout (βfurKO) mice are glucose intolerant, due to smaller islets with lower insulin content and abnormal dense core secretory granule morphology. RNA expression analysis and differential proteomics on βfurKO islets revealed activation of Activating Transcription Factor 4 (ATF4), which was mediated by mammalian target of rapamycin C1 (mTORC1). βfurKO cells show impaired cleavage of the accessory V-ATPase subunit Ac45, and by blocking this pump in β cells the mTORC1 pathway is activated. Furthermore, βfurKO cells show lack of insulin receptor cleavage and impaired response to insulin. Taken together, these results suggest a model of mTORC1-ATF4 hyperactivation in β cells lacking furin, which causes β cell dysfunction.
Loss of <i>Furin</i> in β-Cells Induces an mTORC1-ATF4 Anabolic Pathway That Leads to β-Cell Dysfunction.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition.
Specimen part, Cell line
View SamplesInhibitors of the mechanistic target of rapamycin (mTOR) are currently used to treat advanced metastatic breast cancer. However, whether an aggressive phenotype is sustained through adaptation or resistance to mTOR inhibition remains unknown. Here, complementary studies in human tumors, cancer models and cell lines reveal transcriptional reprogramming that supports metastasis in response to mTOR inhibition. This cancer feature is driven by EVI1 and SOX9. EVI1 functionally cooperates with and positively regulates SOX9, and promotes the transcriptional upregulation of key mTOR pathway components (REHB and RAPTOR) and of lung metastasis mediators (FSCN1 and SPARC). The expression of EVI1 and SOX9 is associated with stem cell-like and metastasis signatures, and their depletion impairs the metastatic potential of breast cancer cells. These results establish the mechanistic link between resistance to mTOR inhibition and cancer metastatic potential, thus enhancing our understanding of mTOR targeting failure.
Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genomic profiling of CHEK2*1100delC-mutated breast carcinomas.
Specimen part
View SamplesThe transcription factor Helios is expressed in a large subset of Foxp3+ Tregs of both mouse and man. We previously demonstrated that Treg induced in peripheral sites (pTreg) from Foxp3- T conventional (Tconv) cells were Helios- and proposed that Helios is a marker of thymic derived Treg (tTreg). To compare the two Treg subpopulations, we generated Helios-GFP reporter mice and crossed them to Foxp3-RFP reporter mice. The Helios+ Treg population expressed a more activated phenotype and had a higher suppressive capacity in vitro. Both populations expressed a highly demethylated TSDR and both subsets were equivalent in their ability to suppress inflammatory bowel disease in vivo. However, Helios+ Treg more effectively inhibited the proliferation of activated, autoreactive splenocytes from scurfy mice. When Helios+ and Helios- Treg were transferred to lymphoreplete mice, both populations maintained comparable Foxp3 expression, but Foxp3 expression was less stable in Helios- Treg when transferred to lymphopenic mice. Gene expression profiling of the two populations demonstrated a large number of differentially expressed genes and that Helios- Treg subpopulation expressed certain genes normally expressed in CD4+Foxp3- T cells. TCR repertoire analysis indicated very little overlap between Helios+ and Helios- Treg. Thus, Helios+ and Helios- Treg subpopulations are phenotypically and functionally distinct, consistent with thymic and peripheral sites of origin, respectively. Because of their superior suppressive activity and enhanced stability Foxp3+Helios+ Treg represent the optimal Treg population for cellular immunotherapy. Overall design: 5 replicates of wildtype vs knockout Helios gene in Treg cells.
Helios<sup>+</sup> and Helios<sup>-</sup> Treg subpopulations are phenotypically and functionally distinct and express dissimilar TCR repertoires.
Specimen part, Subject
View SamplesGene expression was influenced most by the tissue source, followed by culture methodology, next by location where the cells were cultured and lastly the donor variability.
The impact of cell source, culture methodology, culture location, and individual donors on gene expression profiles of bone marrow-derived and adipose-derived stromal cells.
Subject
View SamplesMutations in the RUNX1 gene (RUNX1mut) have been established in myelodysplasia (MDS), de novo and secondary acute myeloid leukaemia (AML), and are in general associated with an unfavourable clinical outcome. Familial RUNX1 mutations are associated with familial thrombocytopenia and these patients have a predisposition to AML development. However, a number of studies have been performed so far in mice which might be distinct from the human hematopoietic system. Therefore we studied the cellular phenotypes, the RUNX1 binding pattern and expression profile induced by RUNX1mut in cord blood (CB) CD34+ cells and induced pluripotent stem cell (iPSC) and compared these findings to primary RUNX1mut AML's. Overall design: A total of nine samples were subject to RNA-Seq including RUNX1mut-transduced cord blood CD34 cells and time-course iPSCs.
RUNX1 mutations enhance self-renewal and block granulocytic differentiation in human in vitro models and primary AMLs.
Specimen part, Subject
View SamplesThe chromatin regulator Aiolos and the transcriptional coactivator OBF-1 have been implicated in regulating aspects of B cell maturation and activation. Mice lacking either of these factors have a largely normal early B cell development. However, when both factors are eliminated simultaneously a block is uncovered at the transition between pre-B and immature B cells, indicating that these proteins exert a critical function in developing B lymphocytes. In mice deficient for Aiolos and OBF-1, the numbers of immature B cells are reduced, small pre-BII cells are increased and a significant impairment in immunoglobulin light chain DNA rearrangement is observed. We identified genes whose expression is deregulated in the pre-B cell compartment of these mice. In particular, we found that components of the pre-BCR, such as the surrogate light chain genes l5l5 and VpreB, fail to be efficiently silenced in double-mutant mice. Strikingly, developmentally regulated nuclear repositioning of the l5l5 gene is impaired in pre-B cells lacking OBF-1 and Aiolos. These studies uncover a novel role for OBF-1 and Aiolos in controlling the transcription and nuclear organization of genes involved in pre-BCR function.
Silencing and nuclear repositioning of the lambda5 gene locus at the pre-B cell stage requires Aiolos and OBF-1.
No sample metadata fields
View SamplesChronic hepatitis C virus (HCV) infection is now routinely treated with interferon (IFN)-free regimens composed of directly acting antiviral (DAA) agents. Changes in hepatic and peripheral innate and adaptive immune function during DAA therapy associate with achieving a sustained virologic response (SVR). The present study explored the impact of cirrhosis on host endogenous interferon pathways during DAA therapy. mRNA and micro-RNA (miRNA) expression profiling was performed on paired pre- and end-of-treatment (EOT) liver biopsies from subjects treated with a 2 DAA regimen (sofosbuvir/ledipasvir [SOF/LDV]) for 12 weeks (n=4, 3 with cirrhosis) or a 3 DAA regimen (SOF/LDV with GS-9669 or GS-9451) for 6 weeks (n=6, 0 with cirrhosis). Nine of ten subjects achieved SVR, with one relapse in the GS-9669 treatment arm (ISHAK fibrosis 4). Hepatic interferon-stimulated gene expression was down-regulated in the liver of all subjects, with no observable impact of cirrhosis or duration of treatment. Hepatic down-regulation of all type-III IFNs was observed (IFNL1, IFNL2, IFNL3, IFNL4-G), while IFNA2 expression, undetectable in all subjects pre-treatment, was detected in 3 of 9 subjects at EOT (all 3 achieved SVR). Only the subject who relapsed had detectable IFNL4-G expression in EOT liver. No change in IFNB1, IFNG, or IFNA5 expression was observed, and expression of other type-I IFNs (IFNA1, IFNA4, IFNA5, IFNA6, IFNA8, IFNA16, IFNA17) was not detected pre- or post-treatment. While expression of multiple miRNAs changed in liver tissue over the course of treatment, most miRNAs previously associated with HCV replication, innate interferon signaling, and hepatic fibrosis did not change significantly. Conclusions: Changes in the host IFN-response during DAA therapy associate with favorable treatment outcome regardless of composition and duration of therapy or extent of hepatic fibrosis.
Achieving sustained virologic response after interferon-free hepatitis C virus treatment correlates with hepatic interferon gene expression changes independent of cirrhosis.
No sample metadata fields
View Samples