refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2103 results
Sort by

Filters

Technology

Platform

accession-icon GSE85029
Dido as a switchboard that regulates self-renewal and differentiation in embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

DIDO as a Switchboard that Regulates Self-Renewal and Differentiation in Embryonic Stem Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE85006
Dido as a switchboard that regulates self-renewal and differentiation in embryonic stem cells (Affy)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transition from symmetric to asymmetric cell division requires precise coordination of differential gene expression. Embryonic stem cells (ESC) strongly express Dido3, whose C-terminal truncation impedes ESC differentiation while retaining self-renewal. We show that Dido3 binds to its gene locus via H3K4me3 and RNA pol II and, at differentiation onset, induces expression of its splice variant Dido1, which then leads to Dido3 degradation and downregulation of stemness genes. We propose that Dido isoforms act as a switchboard to regulate genetic programs for ESC transition from pluripotency maintenance to promotion of differentiation.

Publication Title

DIDO as a Switchboard that Regulates Self-Renewal and Differentiation in Embryonic Stem Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE71634
Gene expression profiling of healthy controls upon Interferon-beta stimulation
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This experiment was carried out in the context of a pharmacogenetic study of long-term (4-year follow-up) response to Interferon-beta treatment in two cohorts of Italian Multiple Sclerosis patients, to identify genetic variants (SNPs) that may influence response to IFN-beta. We integrated results from meta-analysis of the two cohorts with gene expression profiling of IFN stimulated PBMCs from 20 healthy controls and eQTL analyses, to look at possible enrichment of IFN-beta induced genes with genes mapped by top-ranking meta-analyzed SNPs.

Publication Title

Pharmacogenetic study of long-term response to interferon-β treatment in multiple sclerosis.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE65945
Transcriptional profiling of proliferating and differentiating SPC04 human neural stem cell line
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Here we used microarray expression profiling to characterise global changes in gene expression during stages of proliferation and differentiation of human neural stem cells

Publication Title

Associations of the Intellectual Disability Gene MYT1L with Helix-Loop-Helix Gene Expression, Hippocampus Volume and Hippocampus Activation During Memory Retrieval.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP100697
Next Generation Sequencing of Wild Type and LXRa-Ser196 phosphorylation deficient Murine Hepatic Transcriptomes on a High Fat/High Cholesterol Diet
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Liver X Receptors (LXRa and ß) are ligand-activated transcription factors that play a key role in the control of lipid homeostasis, as well as modulation of immunity and inflammation. LXR activity can be regulated by posttranslational modifications, such as phosphorylation. This study aims to assess changes in the hepatic transcriptional profiles of mice that carry a whole-body phosphorylation deficient knock in mutant of LXRa (S196A) compared to wild-type (WT) upon being fed a HFHC diet. Overall design: Liver mRNA profiles of either wild-type (WT) or LXRa-S196A female mice after being fed a High Fat-High Cholesterol diet for 6 weeks. Three biological replicate samples for each group are included. WT samples are used as controls.

Publication Title

Impaired LXRα Phosphorylation Attenuates Progression of Fatty Liver Disease.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP101949
Next Generation Sequencing of Wild Type and LXRa-Ser196 phosphorylation deficient Murine Hepatic Transcriptomes on a Chow diet
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Liver X Receptors (LXRa and ß) are ligand-activated transcription factors that play a key role in the control of lipid homeostasis, as well as modulation of immunity and inflammation. LXR activity can be regulated by posttranslational modifications, such as phosphorylation. This study aims to assess changes in the hepatic transcriptional profiles of mice that carry a whole-body phosphorylation deficient knock in mutant of LXRa (S196A) compared to wild-type (WT) fed a chow diet. Overall design: Liver mRNA profiles of either wild-type (WT) or LXRa-S196A 16-week old female mice on a chow diet. Three biological replicate samples for each group are included. WT samples are used as controls.

Publication Title

Impaired LXRα Phosphorylation Attenuates Progression of Fatty Liver Disease.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP058785
Yap and Taz in Neural Crest play a Crucial Role in Smooth Muscle Development
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

We conditionally knocked out both Yap and Taz in cranial neural crest (CNC) using the Wnt1Cre driver and sequenced mRNA from embryonic day 10.5 mandibles. Overall design: Examination of mRNA level in E10.5 mandibular tissues from control and Wnt1Cre Taz and Yap dKO mutant.

Publication Title

Yap and Taz play a crucial role in neural crest-derived craniofacial development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE68627
Snf5F/Fp53L/LGFAP-Cre tumors and human AT/RT show similar gene expression signatures
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Human medulloblastoma (MB) can be segregated into four major categories based on gene expression patterns: Hedgehog (HH) subtype, Wnt subtype, Group 3, and Group 4. However, they all exhibit strikingly different gene expression profiles from Atypical Teratoid/Rhabdoid Tumor (AT/RT). We re-analyzed published gene expression microarray dataset of pediatric brain tumors to identify a gene expression profile that clearly distinguished human AT/RT from human MB. We used this profile, choosing only genes that have clear murine orthologs, to compare tumors from Snf5F/Fp53L/LGFAP-Cre mice (in C57Bl/6 strain background) with MB from Ptc1+/- mice (in mixed C57Bl/6 and 129Sv strain background). Snf5F/Fp53L/LGFAP-Cre tumors are clearly very different from mouse MB and the markers that distinguish human AT/RT from human MB also distinguish the mouse tumors.

Publication Title

Generation of a mouse model of atypical teratoid/rhabdoid tumor of the central nervous system through combined deletion of Snf5 and p53.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11675
Chronic myelogenous leukemia hematopoietic stem cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

We show the molecular and functional characterization of a novel population of lineage-negative CD34-negative (Lin- CD34-) hematopoietic stem cells (HSCs) from chronic myelogenous leukemia (CML) patients at diagnosis. Molecular caryotyping and quantitative analysis of BCR/ABL transcript demonstrated that about one third of CD34- was leukemic. CML CD34- cells showed kinetic quiescence and limited clonogenic capacity. However, stroma-dependent cultures and cytokines induced CD34 expression on some HSCs, cell cycling, acquisition of clonogenic activity and increased expression of BCR/ABL transcript. CML CD34- cells showed an engraftment rate in immunodeficient mice similar to that of CD34+ cells. Gene expression profiling revealed the down-regulation of cell cycle arrest genes together with genes involved in antigen presentation and processing, while the expression of angiogenic factors was strongly up-regulated when compared to normal counterparts. Flow cytometry analysis confirmed the significant down-regulation of HLA class I and II molecules in CML CD34-cells. Increasing doses of imatinib mesilate (IM) did not affect fusion transcript levels, BCR-ABL kinase activity and the clonogenic efficiency of CML CD34- cells as compared to leukemic CD34+cells.

Publication Title

Molecular and functional analysis of the stem cell compartment of chronic myelogenous leukemia reveals the presence of a CD34- cell population with intrinsic resistance to imatinib.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE42204
LITAF, a BCL6 target gene, regulates autophagy in mature B-cell lymphomas
  • organism-icon Homo sapiens
  • sample-icon 63 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

LITAF, a BCL6 target gene, regulates autophagy in mature B-cell lymphomas.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact