refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2103 results
Sort by

Filters

Technology

Platform

accession-icon SRP057125
Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury
  • organism-icon Mus musculus
  • sample-icon 747 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Heterogeneous pools of adult neural stem cells (NSCs) contribute to brain maintenance and regeneration after injury. The balance of NSC activation and quiescence, as well as the induction of lineage-specific transcription factors, may contribute to diversity of neuronal and glial fates. To identify molecular hallmarks governing these characteristics, we performed single-cell sequencing of an unbiased pool of adult subventricular zone NSCs. This analysis identified a discrete, dormant NSC subpopulation that already expresses distinct combinations of lineage-specific transcription factors during homeostasis. Dormant NSCs enter a primed-quiescent state before activation, which is accompanied by downregulation of glycolytic metabolism, Notch, and BMP signaling and a concomitant upregulation of lineage-specific transcription factors and protein synthesis. In response to brain ischemia, interferon gamma signaling induces dormant NSC subpopulations to enter the primed-quiescent state. This study unveils general principles underlying NSC activation and lineage priming and opens potential avenues for regenerative medicine in the brain. Overall design: Single cell RNAseq of cells isolated from their in vivo niche in the subventricular zone, Striatum and Cortex during homeostasis as well as following ischemic injury. In total 272 single cells. (<WT>: homeostasis samples; <Ischemic_injured> and <Ischemic_injured_and_Interferon_gamma_knockout>: samples following ischemic injuried).

Publication Title

Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP072988
Single-Cell Analysis Uncovers Clonal Acinar Cell Heterogeneity in the Adult Pancreas
  • organism-icon Mus musculus
  • sample-icon 98 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Acinar cells make up the majority of all cells in the pancreas, yet the source of new acinar cells during homeostasis remains unknown. Using multicolor lineage-tracing and organoid-formation assays, we identified the presence of a progenitor-like acinar cell subpopulation. These cells have long-term self-renewal capacity, albeit in a unipotent fashion. We further demonstrate that binuclear acinar cells are terminally differentiated acinar cells. Transcriptome analysis of single acinar cells revealed the existence of a minor population of cells expressing progenitor markers. Interestingly, a gain of the identified markers accompanied by a transient gain of proliferation was observed following chemically induced pancreatitis. Altogether, our study identifies a functionally and molecularly distinct acinar subpopulation and thus transforms our understanding of the acinar cell compartment as a pool of equipotent secretory cells. Overall design: The single-cell RNA-seq library preparation protocol was based on the SMART seq2 protocol (Picelli et al., 2014) with following modifications. Acinar cells were isolated as described in the section Acinar Cell Isolation and Culture and resuspended in DPBS without Ca2+ and Mg2+ (PAN-Biotech). Cells were collected in a volume of 0.5 µL and transferred to a reaction tube containing 4 µL of 6 M guanidine-HCl (Sigma-Aldrich), 0.1% (v/v) Triton X-100 (Sigma-Aldrich) and 1% (v/v) 2-mercaptoethanol (?Sigma-Aldrich). The tube was immediately transferred into liquid nitrogen and kept there for the duration of cell collection. Next, 2.2× RNA SPRI beads (Beckman Coulter) were added directly to the lysis buffer and incubated for 5 min at room temperature. The beads were washed twice with 70% ethanol. Air-dried beads were resuspended in a solution containing 2 µL of H20, 1 µL of oligo(dT) primer, and 1 µL of dNTP Mix (primer and nucleotides used as in Picelli et al., 2014). Twenty-four cells contained ERCC Spike-In RNAs (1:10,000; Mix2, Ambion) Mix in addition to primer and nucleotides. Beads were incubated for 3 min at 72°C, and reverse transcription and PCR (19 cycles) were performed as described by Picelli et al. (2014). PCR product was cleaned up using 0.8× DNA SPRI beads (Beckman Coulter), and air-dried beads were resuspended in 15 µL of H2O. The quality of cDNA library was assessed for each cell on a high-sensitivity DNA Bioanalyzer chip. Subsequent steps (tagmentation, amplification, multiplexing) were done as previously described (Llorens-Bobadilla et al., 2015). The DKFZ Genomics and Proteomics Core Facility conducted sequencing on an Illumina HiSeq2000 sequencer (paired-end 100 bp).

Publication Title

Single-Cell Analysis Uncovers Clonal Acinar Cell Heterogeneity in the Adult Pancreas.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP077721
Single cell RNAseq of meningeal cortical cells
  • organism-icon Mus musculus
  • sample-icon 183 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Heterogeneity of meningeal cortical cells was deciphered on the molecular level using single cell RNA seq Overall design: RNA sequencing of 179 meningeal cortical cells isolated from naive wild-type mice

Publication Title

Neurogenic Radial Glia-like Cells in Meninges Migrate and Differentiate into Functionally Integrated Neurons in the Neonatal Cortex.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE85029
Dido as a switchboard that regulates self-renewal and differentiation in embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

DIDO as a Switchboard that Regulates Self-Renewal and Differentiation in Embryonic Stem Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE85006
Dido as a switchboard that regulates self-renewal and differentiation in embryonic stem cells (Affy)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transition from symmetric to asymmetric cell division requires precise coordination of differential gene expression. Embryonic stem cells (ESC) strongly express Dido3, whose C-terminal truncation impedes ESC differentiation while retaining self-renewal. We show that Dido3 binds to its gene locus via H3K4me3 and RNA pol II and, at differentiation onset, induces expression of its splice variant Dido1, which then leads to Dido3 degradation and downregulation of stemness genes. We propose that Dido isoforms act as a switchboard to regulate genetic programs for ESC transition from pluripotency maintenance to promotion of differentiation.

Publication Title

DIDO as a Switchboard that Regulates Self-Renewal and Differentiation in Embryonic Stem Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE71634
Gene expression profiling of healthy controls upon Interferon-beta stimulation
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This experiment was carried out in the context of a pharmacogenetic study of long-term (4-year follow-up) response to Interferon-beta treatment in two cohorts of Italian Multiple Sclerosis patients, to identify genetic variants (SNPs) that may influence response to IFN-beta. We integrated results from meta-analysis of the two cohorts with gene expression profiling of IFN stimulated PBMCs from 20 healthy controls and eQTL analyses, to look at possible enrichment of IFN-beta induced genes with genes mapped by top-ranking meta-analyzed SNPs.

Publication Title

Pharmacogenetic study of long-term response to interferon-β treatment in multiple sclerosis.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE65945
Transcriptional profiling of proliferating and differentiating SPC04 human neural stem cell line
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Here we used microarray expression profiling to characterise global changes in gene expression during stages of proliferation and differentiation of human neural stem cells

Publication Title

Associations of the Intellectual Disability Gene MYT1L with Helix-Loop-Helix Gene Expression, Hippocampus Volume and Hippocampus Activation During Memory Retrieval.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP150250
Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain – SMART-seq2
  • organism-icon Mus musculus
  • sample-icon 474 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina HiSeq 3000

Description

Single cell RNA-seq of neural stem cell and astrocytes from old mice Overall design: Single cell RNA-seq of neural stem cell and astrocytes from old mice

Publication Title

Quiescence Modulates Stem Cell Maintenance and Regenerative Capacity in the Aging Brain.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE15623
Expression data from mNSc after 48 hour of treatment with CD95L-T4
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

In neural stem cells, stimulation of the death receptor CD95 does not trigger apoptosis but resulted in increased stem cell survival and neuronal specification via activation of the Src /PI3K /AKT/mTOR signalling pathway. To further characterize CD95-dependent neural stem cell survival and differentiation we used conventional gene expression profiling combined with translation state array analysis. Mouse neural stem cells grown in neurosphere cultures were stimulated with a trimerized CD95L construct (CD95L-T4) and total as well as polysomal bound RNA was isolated 48 hours after stimulation and analysed by microarrays. CD95L-T4 treatment induced a global increase in ribosome-bound mRNA and protein translation as well as changes on genes involved in neurogenesis, protein synthesis and transcription factors.

Publication Title

The death receptor CD95 activates adult neural stem cells for working memory formation and brain repair.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon SRP058785
Yap and Taz in Neural Crest play a Crucial Role in Smooth Muscle Development
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

We conditionally knocked out both Yap and Taz in cranial neural crest (CNC) using the Wnt1Cre driver and sequenced mRNA from embryonic day 10.5 mandibles. Overall design: Examination of mRNA level in E10.5 mandibular tissues from control and Wnt1Cre Taz and Yap dKO mutant.

Publication Title

Yap and Taz play a crucial role in neural crest-derived craniofacial development.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact