refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2103 results
Sort by

Filters

Technology

Platform

accession-icon GSE72099
Genome-wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation
  • organism-icon Homo sapiens, Ambystoma mexicanum, Xenopus laevis
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome 2.0 Array (xlaevis2), Illumina HumanWG-6 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE70834
Serotonergic regulation of melanocyte conversion: a bioelectric network explains stochastic all-or-none hyperpigmentation
  • organism-icon Xenopus laevis
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome 2.0 Array (xlaevis2)

Description

Depolarization of resting membrane potential in select cells in Xenopus larvae induces striking hyperpigmentation due to dysregulation of melanocytes. Here, we show that this non-cell-autonomous process is mediated by cAMP, CREB, and the transcription factors Sox10 and Slug. Our microarray analysis reveals specific transcripts responsive to Vmem levels within a few hours of depolarization, and a set of 517 transcripts whose expression remains altered during the full hyperpigmented phenotype over a week later, linking instructor cell-depolarization to a range of developmental processes and disease states. We also show that voltage-dependent conversion of melanocytes involves the MSH-secreting melanotrope cells of the pituitary, and formulate a model for the molecular pathway linking the bioelectric properties of melanocyte cells microenvironment in vivo to the genetic and cellular changes induced in this melanoma-like phenotype. Remarkably, the phenotype is all-or-none: each individual animal either undergoes melanocyte conversion or not, as a whole. This group decision is stochastic, resulting in varying percentages of hyperpigmented individuals for a given experimental treatment. To understand the stochasticity and dynamic properties of this complex signaling system, we developed a novel computational method that automates the reverse-engineering of stochastic dynamic signaling models. We used this method to discover a network model that quantitatively explained our complex dataset, and even made correct predictions for new experiments that we validated in vivo. Taken together, these data (1) reveal new molecular details about a novel trigger of metastatic-like developmental cell behavior in vivo, (2) suggest new targets for biomedical intervention, and (3) demonstrate proof-of-principle of a computational method for understanding stochastic decision-making by cells during embryonic development and metastasis.

Publication Title

Serotonergic regulation of melanocyte conversion: A bioelectrically regulated network for stochastic all-or-none hyperpigmentation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP121333
microRNA-triggered transposon small RNAs mediate genome dosage response (RNA-Seq)
  • organism-icon Arabidopsis thaliana
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Chromosome dosage plays a significant role in reproductive isolation and speciation in both plants and animals, but underlying mechanisms are largely obscure. Transposable elements can promote hybridity through maternal small RNA, and have been postulated to regulate dosage response via neighboring imprinted genes. Here, we show that a highly conserved microRNA in plants, miR845, targets the tRNAMet primer-binding site (PBS) of LTR-retrotransposons in Arabidopsis pollen, and triggers the accumulation of 21 to 22-nucleotide small RNA in a dose dependent fashion via RNA polymerase IV. We show that these epigenetically activated small-interfering RNAs (easiRNAs) mediate hybridization barriers between diploid seed parents and tetraploid pollen parents (“the triploid block”), and that natural variation for miR845 may account for “endosperm balance” allowing formation of triploid seeds. Targeting the PBS with small RNA is a common mechanism for transposon control in mammals and plants, and provides a uniquely sensitive means to monitor chromosome dosage and imprinting in the developing seed. Overall design: RNA-seq of Arabidopsis pollen

Publication Title

Transposon-derived small RNAs triggered by miR845 mediate genome dosage response in Arabidopsis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE7214
Comparison of gene expression data between wild-type and DM1-affected cells
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Mutant human embryonic stem cells reveal neurite and synapse formation defects in type 1 myotonic dystrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7178
Comparison of gene expression data between wild-type and DM1-affected Neural Precursors Cells (NPC)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of genes that were differentially expressed in mutant VUB03_DM1 as compared to controls VUB01 and SA01 Neural Precursor cells

Publication Title

Mutant human embryonic stem cells reveal neurite and synapse formation defects in type 1 myotonic dystrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7179
Comparison of gene expression data between wild-type and DM1-affected undifferentiated hES cells.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of genes that were differentially expressed in mutant VUB03_DM1 as compared to controls VUB01 and SA01 undifferentiated hES cells

Publication Title

Mutant human embryonic stem cells reveal neurite and synapse formation defects in type 1 myotonic dystrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7177
Comparison of gene expression data between wild-type and DM1-affected Mesodermal Precursors Cells (MPC)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of genes that were differentially expressed in mutant VUB03_DM1 as compared to controls VUB01 and SA01 Mesodermal Precursors Cells.

Publication Title

Mutant human embryonic stem cells reveal neurite and synapse formation defects in type 1 myotonic dystrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE65945
Transcriptional profiling of proliferating and differentiating SPC04 human neural stem cell line
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Here we used microarray expression profiling to characterise global changes in gene expression during stages of proliferation and differentiation of human neural stem cells

Publication Title

Associations of the Intellectual Disability Gene MYT1L with Helix-Loop-Helix Gene Expression, Hippocampus Volume and Hippocampus Activation During Memory Retrieval.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE85029
Dido as a switchboard that regulates self-renewal and differentiation in embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

DIDO as a Switchboard that Regulates Self-Renewal and Differentiation in Embryonic Stem Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE85006
Dido as a switchboard that regulates self-renewal and differentiation in embryonic stem cells (Affy)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transition from symmetric to asymmetric cell division requires precise coordination of differential gene expression. Embryonic stem cells (ESC) strongly express Dido3, whose C-terminal truncation impedes ESC differentiation while retaining self-renewal. We show that Dido3 binds to its gene locus via H3K4me3 and RNA pol II and, at differentiation onset, induces expression of its splice variant Dido1, which then leads to Dido3 degradation and downregulation of stemness genes. We propose that Dido isoforms act as a switchboard to regulate genetic programs for ESC transition from pluripotency maintenance to promotion of differentiation.

Publication Title

DIDO as a Switchboard that Regulates Self-Renewal and Differentiation in Embryonic Stem Cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact