Pulmonary alveoli are complex architectural units thought to undergo endogenous or pharmacologically induced programs of regeneration and degeneration. To study the molecular mechanism of alveoli loss mice were calorie restricted at different timepoints. Lungs were harvested and processed for RNA extraction.
Calorie-related rapid onset of alveolar loss, regeneration, and changes in mouse lung gene expression.
Time
View SamplesIt has been shown that dexamethasone (Dex) impairs the normal lung septation that occurs in the early postnatal period. Treatment with retinoic acid (ATRA) abrogates the effects of Dex. To understand the molecular basis for the Dex indiced inhibition of the formation of the alveoli and the ability of ATRA to prevent the inhibition of septation, gene expression was analyzed in 4-day old mice treated with diluent (control), Dex-treated and ATRA+Dex-treated.
DNA microarray analysis of neonatal mouse lung connects regulation of KDR with dexamethasone-induced inhibition of alveolar formation.
No sample metadata fields
View SamplesForkhead box class O (FoxO) transcription factors regulate whole body energy metabolism, skeletal muscle mass and substrate switching. To elucidate the role of FOXO in skeletal muscle, dominant negative (dn) constructs for FOXO1 (FOXO1dn) or FOXO3 (FOXO3dn) were transfected by electroporation into mouse tibialis anterior muscle and glucose uptake, signal transduction, and glucose stimulated gene expression profiles were assessed. Results were compared against contralateral control transfected muscle.
Regulation of glucose uptake and inflammation markers by FOXO1 and FOXO3 in skeletal muscle.
Sex, Age, Specimen part
View SamplesMegakaryoblastic Leukemia 1 (MKL1) was identified as part of the t(1;22) translocation specific to acute megakaryoblastic leukemia, but nothing is known regarding its role in hematopoiesis. Here we show that overexpression of MKL1 enhances megakaryocytic differentiation of the Human Erythroleukemia cell line (HEL). Microarray analysis reveals that MKL1 promotes expression of megakaryocyte-specific genes such as glycoprotein V (GP5), as well as cytoskeletal and adhesion molecule genes relevant to megakaryocyte differentiation and proplatelet formation. MKL1 is a transcriptional coactivator of Serum Response Factor. In this study, MKL1 also upregulates known SRF targets. Results provide insight into the role of MKL1 in megakaryocytopoiesis.
Role for MKL1 in megakaryocytic maturation.
No sample metadata fields
View SamplesTo investigate molecular mechanisms of resistance, we used two different in vivo xenograft models of estrogen receptor-positive (ER+) breast cancer, with or without HER2 over-expression (MCF7/HER2-18 and MCF7 wt, respectively). Mice with established tumors were assigned to the following treatment groups: continued estrogen supplementation (E2), estrogen deprivation (ED), ED plus tamoxifen (Tam), all with or without the EGFR tyrosine kinase inhibitor gefinitinib (G). Another group received ED plus the antiestrogen fulvestrant (MCF7 wt only). Tumors with acquired or de novo resistance to these endocrine therapies were profiled for mRNA expression using Affymetrix Genechip arrays.
Development of resistance to targeted therapies transforms the clinically associated molecular profile subtype of breast tumor xenografts.
No sample metadata fields
View SamplesTo investigate molecular mechanisms of resistance, we used two different in vivo xenograft models of estrogen receptor-positive (ER+) breast cancer, with or without HER2 over-expression (MCF7/HER2-18 and MCF7 wt, respectively). Mice with established tumors were assigned to the following treatment groups: continued estrogen supplementation (E2), estrogen deprivation (ED), ED plus tamoxifen (Tam), all with or without the EGFR tyrosine kinase inhibitor gefinitinib (G). Another group received ED plus the antiestrogen fulvestrant (MCF7 wt only). Tumors with acquired or de novo resistance to these endocrine therapies were profiled for mRNA expression using Affymetrix Genechip arrays.
Development of resistance to targeted therapies transforms the clinically associated molecular profile subtype of breast tumor xenografts.
No sample metadata fields
View SamplesTo investigate molecular mechanisms of resistance, we used two different in vivo xenograft models of estrogen receptor-positive (ER+) breast cancer, with or without HER2 over-expression (MCF7/HER2-18 and MCF7 wt, respectively). Mice with established tumors were assigned to the following treatment groups: continued estrogen supplementation (E2), estrogen deprivation (ED), ED plus tamoxifen (Tam), all with or without the EGFR tyrosine kinase inhibitor gefinitinib (G). Another group received ED plus the antiestrogen fulvestrant (MCF7 wt only). Tumors with acquired or de novo resistance to these endocrine therapies were profiled for mRNA expression using Affymetrix Genechip arrays.
Development of resistance to targeted therapies transforms the clinically associated molecular profile subtype of breast tumor xenografts.
No sample metadata fields
View SamplesIn order to help determine the genes involved in resistance of breast cancer to endocrine therapy, we compared global gene expression profiles of tamoxifen-resistant MCF-7 WT xenograft tumors with E2-supplemented tumors.
Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Role of DNA methylation in the nucleus accumbens in incubation of cocaine craving.
Sex, Specimen part
View SamplesGene expression profiling of nucleus Accumbens of rats that self administered cocaine and were subjected to 1 or 30 withdrawal days with or without extinction tests.
Role of DNA methylation in the nucleus accumbens in incubation of cocaine craving.
Sex, Specimen part
View Samples