TLR4 deficiency attenuates kidney injury after ischemic reperfusion as measured by both renal function and morphology. To better understand the role of TLR4 during the acute kidney injury, we used DNA microarray to identify genes that were differentially expressed on kidneys in wildtype B10 mice and TLR4 null mice during the early stage of injury.
Endothelial pentraxin 3 contributes to murine ischemic acute kidney injury.
Sex, Specimen part
View SamplesEffects of aneuploidy on gene expression in Arabidopsis thaliana containing extra copies of chromosome 5.
Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana.
Specimen part, Subject
View SamplesThis goal of this microarray analysis is to determine whether the mesonephros-derived theca cells exhibt a different gene expression profile from that of the whole theca cell population
Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells.
Sex, Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
High-grade serous ovarian cancer arises from fallopian tube in a mouse model.
Specimen part, Disease, Disease stage
View SamplesThe cell of origin of serious ovarian cancer is unknown. To create a mouse model for this lethal cancer and identify early cancer biomarkers, we conditionally deleted both Dicer (essential for microRNA biosynthesis) and Pten (a negative regulator of the PI3K pathway) in the female reproductive tract. Beginning at ~3-5 months, these Dicer/Pten mutant mice develop high-grade serious carcinomas that initiate in the stroma of the fallopian tube through a mesenchymal-to-epithelial transition (MET), subsequently envelop the ovary, and then metastasize throughout the peritoneum, resulting in ascites and 100% lethality by 13 months. The fallopian tube cancers demonstrate upregulation of genes encoding known and novel secreted proteins that are potential biomarkers. This study uncovers a new paradigm for the initiation of high-grade serous ovarian cancer.
High-grade serous ovarian cancer arises from fallopian tube in a mouse model.
Specimen part, Disease, Disease stage
View SamplesAnalysis of the regulation of gene expression profiles by retinoblastoma-1 in Sertoli cells. Conditional knockout of Rb1 in Sertoli cells led to progressive infertiliy in male mice that occured between 10 and 14 weeks of age. Results of gene expression studies performed on 6 week-old purified Sertoli cells helped elucidate the key role of RB1 in mature, differentiated Sertoli cells.
Retinoblastoma protein plays multiple essential roles in the terminal differentiation of Sertoli cells.
Age, Specimen part
View SamplesmiR-34c inhibits Dicer/Pten double knockout mouse serous epithelial cancer cell proliferation by inducing cell cycle arrest and apoptosis. We found that miR-34c had a more dramatic effect on inhibiting tumor cell viability than let-7b. The action of miR-34c induced tumor cell cycle arrest in G1 phase and apoptosis and was accompanied with the regulation of key genes involved in cell proliferation and cell cycle G1/S transition. miR-34c suppressed the expression of EZH2 and MYBL2, which may transcriptionally and functionally activate CDKN1C.
Functional analysis of miR-34c as a putative tumor suppressor in high-grade serous ovarian cancer.
Cell line
View SamplesThe cell of origin of serious ovarian cancer is unknown. To create a mouse model for this lethal cancer and identify early cancer biomarkers, we conditionally deleted both Dicer (essential for microRNA biosynthesis) and Pten (a negative regulator of the PI3K pathway) in the female reproductive tract. Beginning at ~3-5 months, these Dicer/Pten mutant mice develop high-grade serious carcinomas that initiate in the stroma of the fallopian tube through a mesenchymal-to-epithelial transition (MET), subsequently envelop the ovary, and then metastasize throughout the peritoneum, resulting in ascites and 100% lethality by 13 months. The fallopian tube cancers demonstrate upregulation of genes encoding known and novel secreted proteins that are potential biomarkers. This study uncovers a new paradigm for the initiation of high-grade serous ovarian cancer.
High-grade serous ovarian cancer arises from fallopian tube in a mouse model.
Specimen part, Disease, Disease stage
View SamplesUterine double conditional inactivation of Smad2 and Smad3 in mice results in endometrial dysregulation, infertility, and uterine cancer. Smad2/3 cKO mice demonstrate abnormal expression of genes involved in inflammation, cell-cycle checkpoint, migration, steroid biosynthesis, and SMAD1/5-driven genes. We performed RNA-sequencing to identify the gene expression differences between the uterine epithelium of control and Smad2/3 cKO. To control for estrous cycle variations, the uterine epithelium was collected from mice at 0.5 dpc. Global gene expression profiles of Smad2/3 cKO versus control mice was analyzed. Our RNA sequencing analysis was performed at 6 weeks of life and already showed significant differences in migratory (Agr2,Slit2) and inflammatory (Ccl20, Crispld2) markers between Smad2/3 cKO and control mice. Overall design: Two group comparison: uterine epithelium of control and Smad2/3 cKO mice. We generated a conditional knockout of Smad2/3 in the uterus and demonstrated that Smad2/3 plays a critical role in the endometrium, with disruption resulting in pubertal-onset uterine hyperplasia and ultimately fatal uterine cancer.
Uterine double-conditional inactivation of <i>Smad2</i> and <i>Smad3</i> in mice causes endometrial dysregulation, infertility, and uterine cancer.
Specimen part, Subject
View SamplesInhibin knockout (Inha-/-) female mice develop sex cord-stromal ovarian cancer with complete penetrance and previous studies demonstrate that the pituitary gonadotropins [follicle stimulating hormone (FSH) and luteinizing hormone (LH)] are influential modifiers of granulosa cell tumor development and progression in inhibin-deficient females. Recent studies have demonstrated that Inha-/- ovarian follicles develop precociously to the early antral stage in prepubertal mice without any increase in serum FSH and these studies suggested that in the absence of inhibins, granulosa cells differentiate abnormally, and thus at sexual maturity may undergo an abnormal response to gonadotropin signaling. To test this hypothesis, we stimulated immature WT and Inha-/- female mice prior to gross tumor formation with gonadotropin analogs, and subsequently examined post-gonadotropin induced ovarian follicle development, as well as preovulatory and hCG-induced gene expression changes in granulosa cells. We find that at three weeks of age, inhibin-deficient ovaries do not show further antral development nor undergo cumulus expansion. Widespread alterations in the transcriptome of gonadotropin-treated Inha-/- granulosa cells suggest that gonadotropins initiate an improper program of cell differentiation in Inha-/- cells. Overall, our experiments reveal that inhibins are essential for the normal gonadotropin-dependent response of granulosa cells.
Defective gonadotropin-dependent ovarian folliculogenesis and granulosa cell gene expression in inhibin-deficient mice.
Specimen part, Treatment
View Samples