Plasma cell leukemia (PCL) is a rare form of plasma cell dyscrasia that presents either as a progression of previously diagnosed multiple myeloma (MM), namely secondary PCL (sPCL), or as the initial manifestation of disease, namely primary PCL (pPCL). Although presenting signs and symptoms include those seen in MM, pPCL is characterized by several aspects that clearly define more aggressive course. To provide insights into the biology of pPCL, we have investigated the transcriptional profiles of a cohort of 21 newly-diagnosed, homogeneously treated pPCL patients included in a multicenter prospective clinical trial. All but one pPCL had one of the main IGH translocations, whose associated transcriptional signatures resembled those observed in MM. A 503-gene signature was identified that distinguished pPCL from MM, from which emerged 28 genes whose trend in expression levels was found associated with the progressive stages of plasma cell dyscrasia in a large dataset of cases from multiple institutions, including samples from normal donors throughout PCL. The transcriptional pattern of the pPCL series was then evaluated in association with outcome. Three genes were identified having expression levels correlated with response to the first-line treatment with lenalidomide/dexamethasone, whereas a 27-gene signature was identified associated with overall survival independently of molecular alterations, hematological parameters and renal function. Overall, our data contribute to a fine dissection of pPCL and may provide novel insights into the molecular definition of a subgroup of high-risk pPCL.
Transcriptional characterization of a prospective series of primary plasma cell leukemia revealed signatures associated with tumor progression and poorer outcome.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with changes in transcriptional profiles.
Specimen part, Disease, Disease stage
View SamplesPrimary plasma cell leukaemia (pPCL) is a rare, yet aggressive form of de novo plasma cell tumor, distinguished from secondary PCL (sPCL) which represents a leukemic transformation of pre-existing multiple myeloma (MM). Here, we performed a comprehensive molecular analysis of a prospective series of pPCLs by means of FISH, single nucleotide polymorphism (SNP) array and gene expression profiling (GEP). IGH@ translocations were identified in 87% of pPCL cases, with prevalence of t(11;14) (40%) and t(14;16) (30.5%), whereas the most frequently altered regions were located at 1p (38%), 1q (48%), 6q (29%), 8p (42%), 13q (74%), 14q (71%), 16q (53%) and 17p (35%). A relevant finding of our study was the identification of a minimal biallelical deletion (1.5 Mb) in 8p21.2 encompassing the putative tumor suppressor gene PPP2R2A that was significantly down-regulated in deleted cases. Mutations of TP53 were identified in 4 cases all but one associated with a monoallelic deletion of the gene, whereas activating mutations of BRAF occurred in one case and were absent for N- and K-RAS. To evaluate the influence of allelic imbalances in transcriptional expression we performed an integrated genomic analysis with GEP data, showing a significant dosage effect of genes involved in transcription, translation, methyltransferases activity, apoptosis as well as Wnt and NF-kB signaling pathways. Overall, we provide a compendium of genomic alterations in a prospective series of pPCLs which may contribute to our understanding of this particular form of plasma cell dyscrasia and to better elucidate the mechanisms of tumor progression in MM.
Genome-wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with changes in transcriptional profiles.
Specimen part, Disease, Disease stage
View SamplesIn an attempt to elucidate the molecular mechanisms underlying the multiple roles of L1 in endothelium, we checked whether manipulating its expression affected the transcriptome of lECs. To this purpose, we compared the gene expression profiles of L1-overexpressing and control lECs by Affymetrix, which revealed a remarkable effect of L1 overexpression on lECs transcriptome.
Endothelial deficiency of L1 reduces tumor angiogenesis and promotes vessel normalization.
Specimen part
View SamplesThe aim of this study is to profile gene expression dynamics during the in vitro differentiation of embryonic stem cells into ventral motor neurons. Expression levels were profiled using Affymetrix microarrays at six timepoints during in vitro differentiation: ES cells (Day 0), embryoid bodies (Day 2), retinoid induction of neurogenesis (Day 2 +8hours of exposure to retinoic acid), neural precursors (Day 3), progenitor motor neurons (Day 4), postmitotic motor neurons (Day 7).
Ligand-dependent dynamics of retinoic acid receptor binding during early neurogenesis.
Cell line
View SamplesIn this experiment, we sought to analyze how the transcriptome of WT, ?5|6, and ?5|6:7|9 cells vary during differentiation of ESCs into cervical motor neurons Overall design: 3 lines (WT, ?5|6, ?5|6:7|9)
CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation.
No sample metadata fields
View SamplesPurpose: We purified whole brain microglia of MFP2 knockout mice and control mice utilizing percoll gradient and FACS sorting, followed by microarray analysis to define the molecular changes in MFP2 knockout mice at the endstage of the disease. We compared the microglia transcriptome of Mfp2-/- microglia to that of SOD1-G93A microglia isolated from spinal cord to define the microglia signature associated with a non-neurodegenerative environment. Results and conclusions: Mfp2-/- microglia acquire an activation state characterized by activation of mammalian target of rapamycin (mTOR). In addition, activated microglia display reduced expression of genes that are normally highly expressed by surveillant microglia in steady-state conditions. The immunological profile of is heterogeneous and encompasses upregulation of both pro- and anti-inflammatory genes. In contrast to the neurodegeneration-specific microglia profile in SOD1-G93A mice, Mfp2-/- microglia do not induce genes associated with phagocytosis, lysosomal activation and neurotoxicity.
Identification of a chronic non-neurodegenerative microglia activation state in a mouse model of peroxisomal β-oxidation deficiency.
Sex, Age, Specimen part
View SamplesTranscriptional programming of cell identity promises to open up new frontiers in regenerative medicine by enabling the efficient production of clinically relevant cell types. We examine if such cellular programming is accomplished by transcription factors that each have an independent and additive effect on cellular identity, or if programming factors synergize to produce an effect that is not independently obtainable. The combinations of Ngn2-Isl1-Lhx3 and Ngn2-Isl1-Phox2a transcription factors program embryonic stem cells to express a spinal or cranial motor neuron identity respectively. The two alternate expression programs are determined by recruitment of Isl1/Lhx3 and Isl1/Phox2a pairs to distinct genomic locations characterized by two alternative dimeric homeobox motifs. These results suggest that the function of programming modules relies on synergistic interactions among transcription factors and thus cannot be extrapolated from the study of individual transcription factors in a different cellular context.
Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity.
Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Histone Methyltransferase G9a Is Required for Cardiomyocyte Homeostasis and Hypertrophy.
Treatment
View SamplesAlthough the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. We evaluated the gene expression profiles of healthy male volunteers who underwent 60 hours of prolonged wakefulness (PW) followed by 12 hours of sleep recovery (SR) using high-resolution microarrays. Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response as well diverse immune system responses such as natural killer pathways including killer cell lectin-like receptors family, as well granzymes and T-cell receptors which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was down-regulated following PW and up-regulated after SR compared to PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC and CEACAM genes, confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.
Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery.
Specimen part
View Samples