We used a novel approach to study the acute effect of three physiologic stressors (active contractions, vibration, and systemic heat stress) in human skeletal muscle. Three hours after the completion of a dose of physiologic stress, we sampled the soleus (contraction and vibration) or vastus lateralis (heat) muscle and developed a unique gene expression signature for each stressor. We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold change), PGC-1 (5.46 fold change), and ABRA (5.98 fold change); and repressed MSTN (0.56 fold change). Heat stress repressed PGC-1 (0.74 fold change); while vibration induced FOXK2 (2.36 fold change). Vibration similarly caused a down regulation of MSTN (0.74 fold change), but to a lesser extent than active muscle contraction. Vibration induced FOXK2 while heat stress repressed PGC-1 (0.74 fold change) and ANKRD1 genes (0.51 fold change). These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell development, growth, and repair.
Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans.
Sex, Specimen part
View SamplesMice were immunized with PCC (pigeon cytochrome c).
Lymphoid reservoirs of antigen-specific memory T helper cells.
No sample metadata fields
View SamplesPP2A regulates inflammatory cytokine/chemokine gene expression by dephosphorylating protein kinases at multiple signaling pathways from stimulated cells. In this dataset, Affymetrix mouse Gene ST 2.1 Array was used to assay total RNA extracted from LPS-treated PP2AC knockout BMDM (PP2ACfl/fl;lyM-Cre) and the control BMDM (PP2ACfl/fl)
Myeloid-Specific Gene Deletion of Protein Phosphatase 2A Magnifies MyD88- and TRIF-Dependent Inflammation following Endotoxin Challenge.
Specimen part
View SamplesChronic hepatitis C virus (HCV) infection is now routinely treated with interferon (IFN)-free regimens composed of directly acting antiviral (DAA) agents. Changes in hepatic and peripheral innate and adaptive immune function during DAA therapy associate with achieving a sustained virologic response (SVR). The present study explored the impact of cirrhosis on host endogenous interferon pathways during DAA therapy. mRNA and micro-RNA (miRNA) expression profiling was performed on paired pre- and end-of-treatment (EOT) liver biopsies from subjects treated with a 2 DAA regimen (sofosbuvir/ledipasvir [SOF/LDV]) for 12 weeks (n=4, 3 with cirrhosis) or a 3 DAA regimen (SOF/LDV with GS-9669 or GS-9451) for 6 weeks (n=6, 0 with cirrhosis). Nine of ten subjects achieved SVR, with one relapse in the GS-9669 treatment arm (ISHAK fibrosis 4). Hepatic interferon-stimulated gene expression was down-regulated in the liver of all subjects, with no observable impact of cirrhosis or duration of treatment. Hepatic down-regulation of all type-III IFNs was observed (IFNL1, IFNL2, IFNL3, IFNL4-G), while IFNA2 expression, undetectable in all subjects pre-treatment, was detected in 3 of 9 subjects at EOT (all 3 achieved SVR). Only the subject who relapsed had detectable IFNL4-G expression in EOT liver. No change in IFNB1, IFNG, or IFNA5 expression was observed, and expression of other type-I IFNs (IFNA1, IFNA4, IFNA5, IFNA6, IFNA8, IFNA16, IFNA17) was not detected pre- or post-treatment. While expression of multiple miRNAs changed in liver tissue over the course of treatment, most miRNAs previously associated with HCV replication, innate interferon signaling, and hepatic fibrosis did not change significantly. Conclusions: Changes in the host IFN-response during DAA therapy associate with favorable treatment outcome regardless of composition and duration of therapy or extent of hepatic fibrosis.
Achieving sustained virologic response after interferon-free hepatitis C virus treatment correlates with hepatic interferon gene expression changes independent of cirrhosis.
No sample metadata fields
View SamplesWe present a novel method of using commercial oligonucleotide expression microarrays for aCGH, enabling DNA copy number measurements and expression profiles to be combined using the same platform. This method yields aCGH data from genomic DNA without complexity reduction at a median resolution of approximately 17,500 base pairs. Due to the well-defined nature of oligonucleotide probes, DNA amplification and deletion can be defined at the level of individual genes and can easily be combined with gene expression data.
Gene-resolution analysis of DNA copy number variation using oligonucleotide expression microarrays.
No sample metadata fields
View SamplesWe analyzed transcriptional changes in 4 prostate cancer cell lines following treatment with the BET inhibitor I-BET762 using Affymetrix Human Genome U133 Plus 2.0 Arrays.
Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer.
Cell line, Time
View SamplesThe effect of benzene exposure on peripheral blood mononuclear cell (PBMC) gene expression was examined in a population of shoe-factory workers with well-characterized occupational exposures to benzene.
Changes in the peripheral blood transcriptome associated with occupational benzene exposure identified by cross-comparison on two microarray platforms.
No sample metadata fields
View SamplesWe report the RNA-Seq data of microglia from CK-p25 mice visual cortex Overall design: Summary of mice and treatments included in this series: CK-p25 mice - in which the expression of the Cdk5 activator p25 is driven by the excitatory neuron-specific CaMKIIa promoter in an inducible manner (CaMKIIa promoter- tTA x TetO- p25+GFP) (Cruz et al., 2003). Following withdrawal of doxycycline from the diet, CK-p25 exhibit progressive neuronal and synaptic loss with cognitive impairment, which is severe by 6 weeks of p25 induction (Cruz et al., 2003). Tau P301S mice, which express high levels of humanized mutant microtubule-associated protein tau and have tau aggregates that are associated with frontotemporal dementia as early as 5 months of age (Yoshiyama et al., 2007). 8 months old P301S mice, at which age they have synaptic and neuronal loss and cognitive deficits. CK = wild type control mice; CK-p25 + No Stim = CK-p25 mice that did not under go any stimulation; CK-p25 +GENUS = Ck-p25 mice that was stimulated with 40 Hz visual stimulation WT = wild type control mice; P301S + No Stim = P301S mice that did not under go any stimulation; P301S +GENUS = P301S mice that was stimulated with 40 Hz visual stimulation
Gamma Entrainment Binds Higher-Order Brain Regions and Offers Neuroprotection.
Specimen part, Subject
View SamplesSeasonal and pandemic influenza is a cause of morbidity and mortality worldwide. Most people infected with influenza virus display mild to moderate disease phenotypes and recover within a few weeks.
Epigenetic and Transcriptomic Regulation of Lung Repair during Recovery from Influenza Infection.
Specimen part
View SamplesHuman toxicogenomic studies to date have been of limited size, have mainly addressed exposures at the upper end of typical ranges of human exposure, and have often lacked precise, individual estimates of exposure. Previously, we identified genes associated with exposure to high (>10 ppm) levels of the leukemogen, benzene, through transcriptomic analyses of blood cells from small numbers of occupationally exposed workers. Here, we have expanded the study to 125 workers exposed to a wide range of benzene levels, including <1 ppm. Study design, and analysis with a mixed effects model, removed sources of biological and experimental variability and revealed highly significant widespread perturbation of gene expression at all exposure levels. Benzene is an established cause of acute myeloid leukemia (AML), and may cause one or more lymphoid malignancies in humans. Interestingly, acute myeloid leukemia was among the most significant pathways impacted by benzene exposure in the present study. Further, at most exposure levels, immune response pathways including T cell receptor signaling, B cell receptor signaling, and Toll like receptor signaling were impacted, providing support for the biological plausibility of an association between lymphoma and benzene exposure. We also identified a 16-gene expression signature modified by all levels of benzene exposure, comprising genes with roles in immune response, inflammatory response, cell adhesion, cell-matrix adhesion, and blood coagulation. Overall, these findings support, and expand upon, our current understanding of the mechanisms by which benzene may induce hematotoxicity, leukemia and lymphoma. Furthermore, this study shows that with good study design and analysis, transcriptome profiling of the blood of chemically-exposed humans can identify relevant biomarkers across a range of exposures and inform about potential associations with disease risks.
Global gene expression profiling of a population exposed to a range of benzene levels.
Sex, Age, Subject
View Samples