Gene expression profiling of zebrafish early eye development on 3 to 5 days post fertilization (dpf)
Integrating multiple genome annotation databases improves the interpretation of microarray gene expression data.
Specimen part
View SamplesSpinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disorder caused by a polyglutamine-encoding CAG repeat expansion in the ATXN3 gene, which encodes a deubiquitinating enzyme, ATXN3, implicated in numerous quality control pathways. Several mechanisms have been proposed to explain the pathogenic role of mutant polyQ-expanded ATXN3 in SCA3 including disease protein aggregation, impairment of ubiquitin-proteasomal degradation and transcriptional dysregulation. A better understanding of the normal functions of this protein may shed light on SCA3 disease pathogenesis. To assess the potential normal role of ATXN3 in regulating transcription, we compared gene expression profiles in wildtype (WT) versus Atxn3 knockout (KO) mouse embryonic fibroblasts (MEFs).
Loss of the Spinocerebellar Ataxia type 3 disease protein ATXN3 alters transcription of multiple signal transduction pathways.
Specimen part
View SamplesPulmonary hypoxia is a common complication of chronic lung diseases leading to the development of pulmonary hypertension. The underlying sustained increase in vascular resistance in hypoxia is a response unique to the lung. Thus, we hypothesised that there are genes whose expression is altered selectively in the lung in response to alveolar hypoxia.
Lung-selective gene responses to alveolar hypoxia: potential role for the bone morphogenetic antagonist gremlin in pulmonary hypertension.
No sample metadata fields
View SamplesThe gene expression profile of blood drawn from healthy individuals was studied over a period of six months, at five time points. The gene expression profiles appeared to be constant over one month and to slightly vary over three months. A small proportion of genes were found to be differentially regulated according to gender. Differential gene regulation by age (in subjects 2555 years of age versus subjects > 55 years of age) was not observed.
A longitudinal study of gene expression in healthy individuals.
Sex, Age, Specimen part, Subject
View SamplesMycobacterium bovis, the agent of bovine tuberculosis, causes an estimated $3 billion annual losses to global agriculture due, in part, to the limitations of current diagnostics. Development of next-generation diagnostics requires a greater understanding of the interaction between the pathogen and the bovine host. Therefore, to explore the early response of the alveolar macrophage to infection, we report the first application of RNA-sequencing to define, in exquisite detail, the transcriptomes of M. bovis-infected and non-infected alveolar macrophages from ten calves at 2, 6, 24 and 48?hours post-infection. Differentially expressed sense genes were detected at these time points that revealed enrichment of innate immune signalling functions, and transcriptional suppression of host defence mechanisms (e.g., lysosome maturation). We also detected differentially expressed natural antisense transcripts, which may play a role in subverting innate immune mechanisms following infection. Furthermore, we report differential expression of novel bovine genes, some of which have immune-related functions based on orthology with human proteins. This is the first in-depth transcriptomics investigation of the alveolar macrophage response to the early stages of M. bovis infection and reveals complex patterns of gene expression and regulation that underlie the immunomodulatory mechanisms used by M. bovis to evade host defence mechanisms. Overall design: Whole-transcriptome analysis of M. bovis- and non-infected alveolar macrophages from ten calves (n = 10) at 2, 6, 24 and 48 hours (h) post-infection using RNA-sequencing (RNA-seq).
RNA sequencing provides exquisite insight into the manipulation of the alveolar macrophage by tubercle bacilli.
Sex, Specimen part, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Preclinical biomarkers for a cyclin-dependent kinase inhibitor translate to candidate pharmacodynamic biomarkers in phase I patients.
Specimen part, Cell line
View SamplesA genomics-based approach to identify pharmacodynamic biomarkers was used for a CDK (cyclin-dependent kinase) inhibitory drug. R547 is a potent CDK inhibitor with a potent anti-proliferative effect at pharmacologically relevant doses, and is currently in Phase I clinical trials. Utilizing preclinical data derived from microarray experiments, we identified pharmacodynamic biomarkers to test in blood samples from patients in clinical trials. These candidate biomarkers were chosen based on several criteria: relevance to the mechanism of action of R547, dose responsiveness in preclinical models, and measurable expression in blood samples. We identified 26 potential biomarkers of R547 action and tested their clinical validity in patient blood samples by quantitative real-time PCR analysis.
Preclinical biomarkers for a cyclin-dependent kinase inhibitor translate to candidate pharmacodynamic biomarkers in phase I patients.
Cell line
View SamplesA genomics-based approach to identify pharmacodynamic biomarkers was used for a CDK (cyclin-dependent kinase) inhibitory drug. R547 is a potent CDK inhibitor with a potent anti-proliferative effect at pharmacologically relevant doses, and is currently in Phase I clinical trials. Utilizing preclinical data derived from microarray experiments, we identified pharmacodynamic biomarkers to test in blood samples from patients in clinical trials. These candidate biomarkers were chosen based on several criteria: relevance to the mechanism of action of R547, dose responsiveness in preclinical models, and measurable expression in blood samples. We identified 26 potential biomarkers of R547 action and tested their clinical validity in patient blood samples by quantitative real-time PCR analysis.
Preclinical biomarkers for a cyclin-dependent kinase inhibitor translate to candidate pharmacodynamic biomarkers in phase I patients.
Cell line
View SamplesA genomics-based approach to identify pharmacodynamic biomarkers was used for a CDK (cyclin-dependent kinase) inhibitory drug. R547 is a potent CDK inhibitor with a potent anti-proliferative effect at pharmacologically relevant doses, and is currently in Phase I clinical trials. Utilizing preclinical data derived from microarray experiments, we identified pharmacodynamic biomarkers to test in blood samples from patients in clinical trials. These candidate biomarkers were chosen based on several criteria: relevance to the mechanism of action of R547, dose responsiveness in preclinical models, and measurable expression in blood samples. We identified 26 potential biomarkers of R547 action and tested their clinical validity in patient blood samples by quantitative real-time PCR analysis.
Preclinical biomarkers for a cyclin-dependent kinase inhibitor translate to candidate pharmacodynamic biomarkers in phase I patients.
Specimen part
View SamplesMurine testis developmental time course created from tissue samples collected from birth through adulthood and hybridized to MGU74v2 A, B, and C chips in duplicate
The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis.
No sample metadata fields
View Samples