refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 130 results
Sort by

Filters

Technology

Platform

accession-icon SRP064762
Chronic cardiac contractile dysfunction without hypertrophy does not provoke a compensatory transcriptional response
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

mRNA-sequencing from ribosomal RNA-depleted cardiac total RNA was performed 9 weeks after injection of rAAV6-PLCb1a, rAAV6-PLCb1b or rAAV6-blank viri into the tail vein of C57BL/6 male mice (7-8 weeks of age at time of injection). Overall design: 6 biological replicates each of rAAV6-PLCb1a, rAAV6-PLCb1b or rAAV6-blank-treated mice.

Publication Title

Chronic Contractile Dysfunction without Hypertrophy Does Not Provoke a Compensatory Transcriptional Response in Mouse Hearts.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE775
Mouse model of myocardial infarction
  • organism-icon Mus musculus
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

This dataset is a time series (1 hour [h], 4 hours, 24 hours, 48 hours, 1 week [w], and 8 weeks) intended to compare normal functioning left ventricles [lv + lv2] with infarcted [ilv] and non-infarcted left ventricles [nilv]. Ilv samples are taken from the region between the LAD artery and the apex on a mouse with myocardial infarction. Lv2 samples are from the same region in a sham operated mouse. Nilv samples are taken from the region above the infartion and the left ventricle [lv] samples mimic that region in a sham mouse. The lv and lv2 samples can be compared as both are from normal functioning hearts. For more information visit http://cardiogenomics.med.harvard.edu/groups/proj1/pages/mi_home.html

Publication Title

Mouse cardiac surgery: comprehensive techniques for the generation of mouse models of human diseases and their application for genomic studies.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE57538
MYC is an early response regulator of human adipogenesis in adipose stem cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

MYC is induced early in human adipose stem cells in response to a standard MDIR adipogenic cocktail. The objective of this experiment was to identify key gene networks impacted by MYC loss-of-function in a mixed donor pool of human derived adipose stem cells.

Publication Title

MYC is an early response regulator of human adipogenesis in adipose stem cells.

Sample Metadata Fields

Sex, Race

View Samples
accession-icon GSE109508
In vitro transcription studies used in a proof of concept whole transcriptome model predition study - A673 cells (1 of 4)
  • organism-icon Homo sapiens
  • sample-icon 90 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

A673 cells were exposed in triplicate to three agrichemicals for 24hrs at 8 concentrations and a DMSO vehicle control (0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10 M plus DMSO vehicle controls). While a common set of DMSO controls was used, these CEL files were RMA normalized independently with each of the chemical treated groups. Gene expression was measured on an Affymetrix GeneTitan system. The compounds used were fenbuconazole (a.k.a FENB, CAS # 114369-43-6) a triazole fungicide, imazalil (a.k.a. IMAZ, CAS # 35554-44-0), an azole pesticide, and 2,4-dichlorophenoxyacetic acid (a.k.a. 2,4-D or 2-4-D in file names, CAS # 94-75-7), a chlorophenoxy herbicide.

Publication Title

A Qualitative Modeling Approach for Whole Genome Prediction Using High-Throughput Toxicogenomics Data and Pathway-Based Validation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE109509
In vitro transcription studies used in a proof of concept whole transcriptome model predition study - MCF7 cells (2 of 4)
  • organism-icon Homo sapiens
  • sample-icon 90 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

MCF7 cells were exposed in triplicate to three agrichemicals for 24hrs at 8 concentrations and a DMSO vehicle control (0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10 M plus DMSO vehicle controls). While a common set of DMSO controls was used, these CEL files were RMA normalized independently with each of the chemical treated groups. Gene expression was measured on an Affymetrix GeneTitan system. The compounds used were fenbuconazole (a.k.a FENB, CAS # 114369-43-6) a triazole fungicide, imazalil (a.k.a. IMAZ, CAS # 35554-44-0), an azole pesticide, and 2,4-dichlorophenoxyacetic acid (a.k.a. 2,4-D or 2-4-D in file names, CAS # 94-75-7), a chlorophenoxy herbicide.

Publication Title

A Qualitative Modeling Approach for Whole Genome Prediction Using High-Throughput Toxicogenomics Data and Pathway-Based Validation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE109511
In vitro transcription studies used in a proof of concept whole transcriptome model predition study - HepaRG cells (3 of 4)
  • organism-icon Homo sapiens
  • sample-icon 90 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

HepaRG cells were exposed in triplicate to three agrichemicals for 24hrs at 8 concentrations and a DMSO vehicle control (0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10 M plus DMSO vehicle controls). While a common set of DMSO controls was used, these CEL files were RMA normalized independently with each of the chemical treated groups. Gene expression was measured on an Affymetrix GeneTitan system. The compounds used were fenbuconazole (a.k.a FENB, CAS # 114369-43-6) a triazole fungicide, imazalil (a.k.a. IMAZ, CAS # 35554-44-0), an azole pesticide, and 2,4-dichlorophenoxyacetic acid (a.k.a. 2,4-D or 2-4-D in file names, CAS # 94-75-7), a chlorophenoxy herbicide.

Publication Title

A Qualitative Modeling Approach for Whole Genome Prediction Using High-Throughput Toxicogenomics Data and Pathway-Based Validation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE109513
In vitro transcription studies used in a proof of concept whole transcriptome model predition study - HepG2 cells (4 of 4)
  • organism-icon Homo sapiens
  • sample-icon 90 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

HpeG2 cells were exposed in triplicate to three agrichemicals for 24hrs at 8 concentrations and a DMSO vehicle control (0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10 M plus DMSO vehicle controls). While a common set of DMSO controls was used, these CEL files were RMA normalized independently with each of the chemical treated groups. Gene expression was measured on an Affymetrix GeneTitan system. The compounds used were fenbuconazole (a.k.a FENB, CAS # 114369-43-6) a triazole fungicide, imazalil (a.k.a. IMAZ, CAS # 35554-44-0), an azole pesticide, and 2,4-dichlorophenoxyacetic acid (a.k.a. 2,4-D or 2-4-D in file names, CAS # 94-75-7), a chlorophenoxy herbicide.

Publication Title

A Qualitative Modeling Approach for Whole Genome Prediction Using High-Throughput Toxicogenomics Data and Pathway-Based Validation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE148414
Eye-antenna early L3 disc expression profiling in combinations of COX7a-LoF, ATF4-LoF and Notch-GoF
  • organism-icon Drosophila melanogaster
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Gene expression in larval, early third instar eye-antenna discs was assessed to reveal an ATF4 contribution to target gene induction following COX7a knockdown. As hypothesised, these COX7a-RNAi induced target genes require the transcription factor ATF4 for induction, irrespective of concomitant Notch pathway activation through Delta over-expression.

Publication Title

ATF4-Induced Warburg Metabolism Drives Over-Proliferation in Drosophila.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE148407
Eye-antenna early L3 disc expression profiling in COX7a-LoF and Notch-GoF
  • organism-icon Drosophila melanogaster
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Gene expression in larval, early third instar eye-antenna discs was assesed in genotypes with Notch Gain-of-Function (UAS-Delta or UAS-Notch[intra2]) over-expression or mitochondrial COX7a Loss-of-function (UAS-COX7a-RNAi) or a combination of both (UAS-Delta, UAS-COX7a-RNAi). The analysis revealed that, despite a strong genetic interaction between Notch pathway activation and knockdown of COX7a, no transcriptional cooperation or synergy was detectable in early L3 eye-antenna discs. Rather, COX7a knockdown induced a unique transcriptional signature, which further experiments revealed to be mediated by the transcription factor ATF4.

Publication Title

ATF4-Induced Warburg Metabolism Drives Over-Proliferation in Drosophila.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE85672
Characterization of an abiraterone ultra-responsive phenotype in castration-resistant prostate cancer patient-derived xenografts
  • organism-icon Homo sapiens
  • sample-icon 69 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

To identify the molecular signature associated with abiraterone acetate (AA) response and mechanisms underlying AA resistance in castration-resistant prostate cancer patient-derived xenografts (PDXs).

Publication Title

Characterization of an Abiraterone Ultraresponsive Phenotype in Castration-Resistant Prostate Cancer Patient-Derived Xenografts.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact