Malignant progression in cancer has been associated with the emergence of populations of tumor-initiating cells (TIC) endowed with capabilities for unlimited self-renewal, survival under stress and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by the genetic program known as epithelialmesenchymal transition (EMT) may be an essential step in the evolution of neoplastic cells into fully metastatic populations. A widely accepted paradigm is that EMT potentiates tumor cell self-renewal and metastatic behaviour. Here we describe a cellular model in which a clonal population enriched in TIC expresses a genetic program distinct from a second population with traits of stable EMT, and in which both populations cooperate for enhanced local invasiveness and metastasis. Induction of the TIC-enriched population to undergo EMT by several stimuli or by constitutive overexpression of the transcription factor SNAI1 engaged a mesenchymal program while suppressing the CSC program. This suggests that TIC and EMT, contrary to current paradigms, correspond to alternative states. Furthermore, diffusible factors secreted by the population with EMT traits also induced mesenchymal reprogramming of the population enriched in CSCs. Local invasiveness in vitro and lung colonization in vivo of the TIC-enriched population was enhanced by co-injection with the EMT-trait population, and expanded the range of organs to which it metastasized. Thus, in our model, relatively stable TIC and EMT phenotypes reflect alternative genetic programs expressed by distinct clonal populations. We also suggest that dynamic cooperation between tumor subpopulations displaying either TIC or EMT traits may be a general mechanism driving local invasiveness and metastasis.
Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells.
Cell line
View SamplesLoss of function mutations in the transcription factor THAP1 cause DYT6 dystonia, a childhood-onset motor disorder. DYT6 subjects display abnormalities in the white matter regions of the brain.
The DYT6 Dystonia Protein THAP1 Regulates Myelination within the Oligodendrocyte Lineage.
Specimen part
View SamplesSalt loading (SL) and water deprivation (WD) are experimental challenges that are often used to study the osmotic circuitry of the brain. Central to this circuit is the supraoptic nucleus (SON) of the hypothalamus, which is responsible for the biosynthesis of the hormones, vasopressin (AVP) and oxytocin (OXT), and their transport to terminals that reside in the posterior lobe of the pituitary. Upon osmotic challenge evoked by a change in blood volume or osmolality, the SON undergoes a function related plasticity that creates an environment that allows for an appropriate hormone response. Here, we have described the impact of SL and WD compared to euhydrated (EU) controls in terms of drinking and eating behaviour, body weight and recorded physiological data including circulating hormone data and plasma and urine osmolality. We have also used microarrays to profile the transcriptome of the SON following SL
A comparison of physiological and transcriptome responses to water deprivation and salt loading in the rat supraoptic nucleus.
Specimen part
View SamplesWe used microarrays to assess gene expression changes in cells with siRNA-mediated knockdown of OPG compared to normal cells. Furthermore, we used microarrays to assess gene expression in cells treated with either RANKL or TRAIL compared to vehicle-treated cells.
No influence of OPG and its ligands, RANKL and TRAIL, on proliferation and regulation of the calcification process in primary human vascular smooth muscle cells.
Specimen part, Treatment
View SamplesIn Drosophila, PIWI proteins and bound PIWI interacting RNAs (piRNAs) form the core of a small RNA mediated defense system against selfish genetic elements. Within germline cells piRNAs are processed from piRNA clusters and transposons to be loaded into Piwi/Aubergine/AGO3 and a subset of piRNAs undergoes target dependent amplification. In contrast, gonadal somatic support cells express only Piwi, lack signs of piRNA amplification and exhibit primary piRNA biogenesis from piRNA clusters. Neither piRNA processing/loading nor Piwi mediated target silencing is understood at the genetic, cellular or molecular level. We developed an in vivo RNAi assay for the somatic piRNA pathway and identified the RNA helicase Armitage, the Tudor domain containing RNA helicase Yb and the putative nuclease Zucchini as essential factors for primary piRNA biogenesis. Lack of any of these proteins leads to transposon de-silencing, to a collapse in piRNA levels and to a failure in Piwi nuclear accumulation. We show that Armitage and Yb interact physically and co-localize in cytoplasmic Yb-bodies, which flank P-bodies. Loss of Zucchini leads to an accumulation of Piwi and Armitage in Yb-bodies indicating that Yb-bodies are sites of primary piRNA biogenesis. Overall design: small RNA libraries were prepared from Piwi immuno-precipitates of five different genotypes
An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila.
Subject
View SamplesThe aim of the study was to illucidate how BAFF mediates B cell survival and growth through the identification of BAFF-regulated genes.
BAFF controls B cell metabolic fitness through a PKC beta- and Akt-dependent mechanism.
No sample metadata fields
View SamplesAirway epithelium is the initial point of host-pathogen interaction in Pseudomonas aeruginosa infection, an important pathogen in cystic fibrosis and nosocomial pneumonia. We used global gene expression analysis to determine airway epithelial transcriptional responses dependent on matrilysin (MMP-7) and stromelysin-2 (MMP-10), two matrix metalloproteinases induced by acute P. aeruginosa pulmonary infection. Extraction of Differential Gene Expression (EDGE) analysis of gene expression changes in P. aeruginosa infected organotypic tracheal epithelial cell cultures from wildtype, Mmp7-/-, and Mmp10-/- mice identified 2,089 matrilysin-dependent and 1,628 stromelysin-2-dependent genes that were differentially expressed. Key node network analysis showed that these MMPs controlled distinct gene expression programs involved in proliferation, cell death, immune responses, and signal transduction, among other host defense processes. Our results demonstrate discrete roles for these MMPs in regulating epithelial responses to pseudomonas infection and show that a global genomics strategy can be used to assess MMP function.
Individual matrix metalloproteinases control distinct transcriptional responses in airway epithelial cells infected with Pseudomonas aeruginosa.
No sample metadata fields
View SamplesThis study examines the innate immune response of human pluripotent stem cell derived airway epithelium. Immune challenge was performed with TNF-alpha or bacterial lipopolysaccharide (LPS)
Innate immune response of human pluripotent stem cell-derived airway epithelium.
Specimen part, Treatment
View SamplesTranscript profile of 10 days-old seedlings over expressing miR396
Control of cell proliferation in Arabidopsis thaliana by microRNA miR396.
No sample metadata fields
View SamplesCraniosynostosis is a disease defined by premature fusion of one or more cranial sutures. The mechanistic pathology of isolated single-suture craniosynostosis is complex and while a number of genetic biomarkers and environmental predispositions have been identified, in many cases the causes remain controversial and inconclusive at best. After controlling for variables contributing to potential bias, FGF7, SFRP4, and VCAM1 emerged as potential genetic biomarkers for single-suture craniosynostosis due to their significantly large changes in gene expression compared to the control population. Furthermore, pathway analysis implicated focal adhesion and extracellular matrix (ECM)-receptor interaction as differentially regulated gene networks when comparing all cases of single-suture synostosis and controls. Lastly, overall gene expression was found to be highly conserved between coronal and metopic cases, as evidenced by the fact that WNT2 and IGFBP2 were the only differentially regulated genes identified in a direct comparison. These results not only confirm the roles of previously reported craniosynostosis-related targets but also introduce novel genetic biomarkers and pathways that may play critical roles in its pathogenesis.
Differential expression of extracellular matrix-mediated pathways in single-suture craniosynostosis.
Sex, Specimen part
View Samples