Gene expression of mouse hepatic stellate cells was characterized under the following conditions:
Deactivation of hepatic stellate cells during liver fibrosis resolution in mice.
Sex, Specimen part
View SamplesConsidering the numerous complex and different pathological mechanisms involved in Alzheimers disease (AD) progression, treatments targeting a single cause may lead to limited benefits. The goal of this study was the identification of a novel mode of action for this unmet need. Pharmacological tool compounds: suberoylanilide hydroxamic acid (SAHA) and tadalafil, targeting histone deacetylases (HDAC) and phosphodiesterase 5 (PDE5) respectively, were utilized simultaneously for in-vitro and in-vivo Proof-of-Concept (PoC). A synergistic effect was observed in the amelioration of AD signs using the combination therapy in Tg2576 mice. Finally, a therapeutic agent, CM-414, inhibiting simultaneously HDAC2/6 and PDE5 was generated and tested in Tg2576 mice. CM-414 reversed cognitive impairment, reduced amyloid and tau pathology, and rescued dendritic spine density loss in the hippocampus in AD mice. Importantly, the effect obtained was present after a 4-weeks wash-out period.
Concomitant histone deacetylase and phosphodiesterase 5 inhibition synergistically prevents the disruption in synaptic plasticity and it reverses cognitive impairment in a mouse model of Alzheimer's disease.
Specimen part
View SamplesGene expression of hepatic stellate cells exposed to fetal bovine serum (FBS)
Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice.
Sex, Specimen part
View SamplesGene expression of livers with hepatocyte-specific deletion of Hmgb1 was compared to control livers with floxed Hmgb1
High-mobility group box 1 is dispensable for autophagy, mitochondrial quality control, and organ function in vivo.
Sex, Specimen part
View SamplesWe applied Next-Generation Sequencing (NGS) to miRNAs from blood samples of 48 AD (Alzheimer''s Disease) patients and 22 unaffected controls, yielding a total of 140 unique mature miRNAs with significantly changed expression level. Of these, 82 were higher and 58 lower abundant in samples from AD patients. We selected a panel of 12 miRNAs for a qRT-PCR analysis on a larger cohort of 202 samples including not only AD patients and healthy controls but also patients with other CNS illnesses: Multiple Sclerosis, Parkinson''s Disease, Major Depression, Bipolar Disorder, Schizophrenia, and Mild Cognitive Impairment, which is assumed to represent a transitional period before the development of AD. MiRNA target enrichment analysis of the selected 12 miRNAs indicated an involvement of miRNAs in nervous system development, neuron projection, neuron projection development, and neuron projection morphogenesis, respectively. Using this 12-miRNA signature we were able to differentiate between AD and controls with an accuracy of 93.3%, a specificity of 95.1%, and a sensitivity of 91.5%. The differentiation of AD from other neurological diseases was possible with accuracies between 73.8% and 77.8%. The differentiation of the other CNS disorders from controls yielded even higher accuracies. Overall design: Examination of the miRNA profile in blood samples of 48 AD patients and 22 controls
A blood based 12-miRNA signature of Alzheimer disease patients.
Sex, Age, Subject
View SamplesThe effect of Tlr4P712H mutation (rendering TLR4 non-functional), or gut-sterilization by antbiotics, on the induction of tumorgenesis by CCl4 and diethylnitrosamine (DEN) was characterized. Affymetrix Mouse 430 2.0 gene expression measurements were used to characterize the transcriptomic basis of the effects of the above treatments and genotypes on tumorgenesis.
Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4.
Sex, Age, Specimen part
View SamplesLMP2A of Epstein-Barr virus is a receptor that mimics an activated B cell receptor, BCR. K1 and K15, related receptors of Kaposi sarcoma-associated herpes virus, KSHV, are expressed in virus-associated tumors but their functions are less obvious. We addressed this uncertainty with mutant EBVs encoding the KSHV genes K1 or K15 in lieu of LMP2A and infected primary human B cells with them. K1 and K15 encoded proteins appear to have noncomplementing redundant functions in this model but our findings suggest that both KSHV proteins can replace LMP2As key activities contributing to the survival, activation and proliferation of B cells.
K1 and K15 of Kaposi's Sarcoma-Associated Herpesvirus Are Partial Functional Homologues of Latent Membrane Protein 2A of Epstein-Barr Virus.
Specimen part, Subject
View SamplesThe prognosis of advanced stage neuroblastoma patients remains poor and, despite intensive therapy, the 5-year survival rate remains less than 50%. We previously identified histone deacetylase (HDAC) 8 as an indicator of poor clinical outcome and a selective drug target for differentiation therapy in vitro and in vivo. Here we performed kinome-wide RNAi screening to identify genes that are synthetically lethal with HDAC8 inhibitors. These experiments identified the neuroblastoma predisposition gene ALK as a candidate gene. Accordingly, the combination of the ALK/MET inhibitor crizotinib and selective HDAC8 inhibitors (3-6M PCI-34051 or 10M 20a) efficiently killed neuroblastoma cell lines carrying wildtype ALK (SK-N-BE(2)-C, IMR5/75), amplified ALK (NB-1), and those carrying the activating ALK F1174L mutation (Kelly), and, in cells carrying the activating R1275Q mutation (LAN-5), combination treatment decreased viable cell count. The effective dose of crizotinib in neuroblastoma cell lines ranged from 0.05M (ALK-amplified) to 0.8M (wildtype ALK). The combinatorial inhibition of ALK and HDAC8 also decreased tumor growth in an in vivo zebrafish xenograft model. Bioinformatic analyses revealed that the mRNA expression level of HDAC8 was significantly correlated with that of ALK in two independent patient cohorts, the Academic Medical Center cohort (n=88) and the German Neuroblastoma Trial cohort (n=649), and co-expression of both target genes identified patients with very poor outcome. Mechanistically, HDAC8 and ALK converge at the level of receptor tyrosine kinase (RTK) signaling and their downstream survival pathways, such as ERK signaling. Combination treatment of HDAC8 inhibitor with crizotinib efficiently blocked the activation of growth receptor survival signaling and shifted the cell cycle arrest and differentiation phenotype toward effective cell death of neuroblastoma cell lines, including sensitization of resistant models, but not of normal cells. These findings reveal combined targeting of ALK and HDAC8 as a novel strategy for the treatment of neuroblastoma.
A kinome-wide RNAi screen identifies ALK as a target to sensitize neuroblastoma cells for HDAC8-inhibitor treatment.
Specimen part
View SamplesCellular senescence is a program of irreversible cell cycle arrest that normal cells undergo in response to progressive shortening of telomeres, changes in telomeric structure, oncogene activation or oxidative stress. The underlying signalling pathways, potentially of major clinicopathological relevance, are unknown. A major stumbling block to studying senescence has been the absence of suitable model systems because of the asynchrony of this process in heterogeneous cell populations. To simplify this process many investigators study oncogene-induced senescence due to expression of activated oncogenes where senescence occurs prematurely without telomere attrition and can be induced acutely in a variety of cell types. We have taken a different approach by making use of the finding that reconstitution of telomerase activity by introduction of the catalytic subunit of human telomerase alone is incapable of immortalising all human somatic cells, but inactivation of the p16-pRB and p53-p21 pathways are required in addition. The ability of SV40 large T antigen to inactivate the p16-pRB and p53-p21 pathways has enabled us to use a thermolabile mutant of LT antigen, in conjunction with hTERT, to develop conditionally immortalised human (HMF3A) fibroblasts that are immortal but undergo an irreversible growth arrest when the thermolabile LT antigen is inactivated leading to activation of pRB and p53. When these cells cease dividing, senescence-associated- b-galactosidase activity is induced and the growth-arrested cells have morphological features and express genes in common with senescent cells. Since these cells growth arrest in a synchronous manner they are an excellent starting point for dissecting the pathways that underlie cellular senescence and act downstream of p16-pRB and p53-p21 pathways. We have combined genome-wide expression profiling with genetic complementation to undertake identification of genes that are differentially expressed when these conditionally immortalised human fibroblasts undergo senescence upon activation of the p16-pRB and p53-p21 tumour suppressor pathways.
Activation of nuclear factor-kappa B signalling promotes cellular senescence.
Cell line, Treatment
View SamplesPseudomonas fluorescens strain SS101 (Pf.SS101) promotes growth of Arabidopsis thaliana, enhances greening and lateral root formation, and induces systemic resistance (ISR) against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Here, targeted and untargeted approaches were adopted to identify bacterial determinants and underlying mechanisms involved in plant growth promotion and ISR by Pf.SS101. Based on targeted analyses, no evidence was found for volatiles, lipopeptides and siderophores in plant growth promotion by Pf.SS101. Untargeted, genome-wide analyses of 7,488 random transposon mutants of Pf.SS101 led to the identification of 21 mutants defective in both plant growth promotion and ISR. Many of these mutants, however, were auxotrophic and impaired in root colonization. Genetic analysis of three mutants followed by site-directed mutagenesis, genetic complementation and plant bioassays revealed the involvement of the phosphogluconate dehydratase gene edd, the response regulator gene colR and the adenylsulfate reductase gene cysH in both plant growth promotion and ISR. Subsequent comparative plant transcriptomics analyses strongly suggest that modulation of sulfur assimilation, auxin biosynthesis and transport, steroid biosynthesis and carbohydrate metabolism in Arabidopsis are key mechanisms linked to growth promotion and ISR by Pf.SS101.
Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens.
Specimen part, Treatment
View Samples