refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 302 results
Sort by

Filters

Technology

Platform

accession-icon GSE46248
Reversal of Flow-Direction is A Critical Mechanical Stimulus for Full Activation of Endothelial Arteriogenesis Signaling Pathways
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This study characterizes the response of primary human endothelial cells (human umbilical vein endothelial cells, HUVECs) to the relative shear stress changes that occur during the initiation of arteriogenesis at the entrance regions to a collateral artery network. HUVECs were preconditioned to a baseline level of unidirectional shear of 15 dynes/cm2 for 24 hours. After 24 hours preconditioning, HUVECs were subjected to an arteriogenic stimulus that mimics the shear stress changes observed in the opposing entrance regions into a collateral artery network. The arteriogenic stimulus consisted of a 100% step wise increase in shear stress magnitude to a unidirectional 30 dynes/cm2 in either the same or opposite direction of the preconditioned shear stress. This simulates either the feeding entrance to the collateral artery circuit or the region that drains into the vasculature downstream of an obstruction in a major artery, respectively. In vivo analysis of collateral growth in the mouse hindlimb showed enhanced outward remodeling in the re-entrant (direction reversing) region that reconnects to the downstream arterial tree, suggesting reversal of shear stress direction as a key enhancer of arteriogenesis. Transcriptional profiling using microarray techniques identified that the reversal of shear stress direction, but not an increase in shear stress alone, yielded a broad-based enhancement of the mechanotransduction pathways necessary for the induction of arteriogenesis.

Publication Title

Mechanisms of Amplified Arteriogenesis in Collateral Artery Segments Exposed to Reversed Flow Direction.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE90607
Fibrostenotic phenotype of fibroblasts in Crohn's disease is dependent on tissue stiffness and reversed by LOX inhibition
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The results of this study indicate that stenotic fibroblasts exhibit an aberrant response to tissue stiffness with reduced MMP activity, leading to a perpetuous vicious circle of ever more fibrosis formation. Altering the microenvironment by LOX inhibition increases MMP activity and decreases ECM contraction, resulting in a potential anti-fibrotic agent for Crohns disease.

Publication Title

Fibrostenotic Phenotype of Myofibroblasts in Crohn's Disease is Dependent on Tissue Stiffness and Reversed by LOX Inhibition.

Sample Metadata Fields

Sex, Specimen part, Disease, Subject

View Samples
accession-icon GSE103172
Indian Hedgehog suppresses a stromal cell driven intestinal immune response
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Indian Hedgehog Suppresses a Stromal Cell-Driven Intestinal Immune Response.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP026382
A miR-155-ruled microRNA hierarchy in dendritic cell maturation and macrophage activation
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

MicroRNAs (miRNAs) are small RNAs that play important regulatory roles in many cellular pathways. MiRNAs associate with members of the Argonaute (Ago) protein family and bind to partially complementary sequences on mRNAs and induce translational repression or mRNA decay. MiRNA expression can be controlled by transcription factors and can therefore be cell type- or tissue-specific. Here we have analyzed miRNA expression profiles in murine monocyte-derived dendritic cells (DCs) and macrophages upon stimulation with LPS, LDL, eLDL and oxLDL to identify not only stimuli-specific miRNA, but also to identify a hierarchical miRNA system involving miR-155. For this, miR-155 knockout dendritic cells and macrophages were also sequenced using the same stimuli. Overall design: Sequencing of murine monocyte-derived dendritic cells and macrophages (each wild type and miR-155 knock out cells) matured and stimulated, respectively, by LPS, oxLDL, eLDL or LDL.

Publication Title

A miR-155-dependent microRNA hierarchy in dendritic cell maturation and macrophage activation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE18607
Type I IFN-signaling following Pneumocystis (PC)-infection and clearance in CD4 T cell-competent mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Type I IFN-signaling suppresses an excessive IFN-{gamma} response and prevents lung damage and chronic inflammation following Pneumocystis (PC)-infection and clearance in CD4 T cell-competent mice.

Publication Title

Type-I IFN signaling suppresses an excessive IFN-gamma response and thus prevents lung damage and chronic inflammation during Pneumocystis (PC) clearance in CD4 T cell-competent mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37714
Mammalian TRIM71 as repressor of mRNAs that inhibits translation and affects mRNA stability
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE37713
Expression data from HEK293 Flp-In cells constitutivly expressing FLAG-HA-tagged TRIM71 and that of the parental cell line
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We identify mammalian TRIM71 as repressor of mRNAs that inhibits translation and affects mRNA stability.

Publication Title

The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP019990
miRNAs associated with the different human Argonaute proteins
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

microRNAs (miRNAs) are small non-coding RNAs that function in literally all cellular processes. miRNAs interact with Argonaute (Ago) proteins and guide them to specific target sites located in the 3’ untranslated region (UTR) of target mRNAs leading to translational repression and deadenylation-induced mRNA degradation. Most miRNAs are processed from hairpin-structured precursors by the consecutive action of the RNase III enzymes Drosha and Dicer. However, processing of miR-451 is Dicer-independent and cleavage is mediated by the endonuclease Ago2. Here we have characterized miR-451 sequence and structure requirements for processing as well as sorting of miRNAs into different Ago proteins. Pre-miR-451 appears to be optimized for Ago2 cleavage and changes result in reduced processing. In addition, we show that the mature miR-451 only associates with Ago2 suggesting that mature miRNAs are not exchanged between different members of the Ago protein family. Based on cloning and deep sequencing of endogenous miRNAs associated with Ago1-3, we do not find evidence for miRNA sorting in human cells. However, Ago identity appears to influence the length of some miRNAs, while others remain unaffected. Overall design: Examination of miRNAs associated with endogenous human Ago1-4 in HeLa cells

Publication Title

microRNAs associated with the different human Argonaute proteins.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37712
Expression data from mouse embryonic stem cells upon TRIM71 KD and parental ctrl cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We identify mammalian TRIM71 as repressor of mRNAs that inhibits translation and affects mRNA stability. In this data set we compare the expression profile of mouse ES upon Trim71 KD versus that of the parental cells.

Publication Title

The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26100
Widespread targeted chromatin remodeling during the initial phase of somatic cell reprogramming
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Reprogramming factor expression initiates widespread targeted chromatin remodeling.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact