MicroRNAs (miRNAs) are small RNAs that play important regulatory roles in many cellular pathways. MiRNAs associate with members of the Argonaute (Ago) protein family and bind to partially complementary sequences on mRNAs and induce translational repression or mRNA decay. MiRNA expression can be controlled by transcription factors and can therefore be cell type- or tissue-specific. Here we have analyzed miRNA expression profiles in murine monocyte-derived dendritic cells (DCs) and macrophages upon stimulation with LPS, LDL, eLDL and oxLDL to identify not only stimuli-specific miRNA, but also to identify a hierarchical miRNA system involving miR-155. For this, miR-155 knockout dendritic cells and macrophages were also sequenced using the same stimuli. Overall design: Sequencing of murine monocyte-derived dendritic cells and macrophages (each wild type and miR-155 knock out cells) matured and stimulated, respectively, by LPS, oxLDL, eLDL or LDL.
A miR-155-dependent microRNA hierarchy in dendritic cell maturation and macrophage activation.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.
Specimen part, Cell line
View SamplesWe identify mammalian TRIM71 as repressor of mRNAs that inhibits translation and affects mRNA stability.
The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.
Cell line
View SamplesmicroRNAs (miRNAs) are small non-coding RNAs that function in literally all cellular processes. miRNAs interact with Argonaute (Ago) proteins and guide them to specific target sites located in the 3’ untranslated region (UTR) of target mRNAs leading to translational repression and deadenylation-induced mRNA degradation. Most miRNAs are processed from hairpin-structured precursors by the consecutive action of the RNase III enzymes Drosha and Dicer. However, processing of miR-451 is Dicer-independent and cleavage is mediated by the endonuclease Ago2. Here we have characterized miR-451 sequence and structure requirements for processing as well as sorting of miRNAs into different Ago proteins. Pre-miR-451 appears to be optimized for Ago2 cleavage and changes result in reduced processing. In addition, we show that the mature miR-451 only associates with Ago2 suggesting that mature miRNAs are not exchanged between different members of the Ago protein family. Based on cloning and deep sequencing of endogenous miRNAs associated with Ago1-3, we do not find evidence for miRNA sorting in human cells. However, Ago identity appears to influence the length of some miRNAs, while others remain unaffected. Overall design: Examination of miRNAs associated with endogenous human Ago1-4 in HeLa cells
microRNAs associated with the different human Argonaute proteins.
No sample metadata fields
View SamplesWe identify mammalian TRIM71 as repressor of mRNAs that inhibits translation and affects mRNA stability. In this data set we compare the expression profile of mouse ES upon Trim71 KD versus that of the parental cells.
The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
siPools: highly complex but accurately defined siRNA pools eliminate off-target effects.
Cell line
View SamplesShort interfering RNAs (siRNA) are widely used as tool for gene inactivation in basic research and therapeutic applications. One of the major shortcomings of siRNA experiments are sequence-specific Off-target effects. Such effects are largely unpredictable because siRNAs can affect partially complementary sequences and function like microRNAs (miRNAs), which inhibit gene expression on mRNA stability or translational levels.
siPools: highly complex but accurately defined siRNA pools eliminate off-target effects.
Cell line
View SamplesSmall interfering RNAs (siRNAs) and microRNAs (miRNAs) guide catalytic sequence-specific cleavage of fully or nearly fully complementary target mRNAs or control translation and/or stability of many mRNAs that share 6-8 nucleotides (nt) of complementarity to the siRNA and miRNA 5' end. siRNA- and miRNA-containing ribonucleoprotein silencing complexes are assembled from double-stranded 21- to 23-nt RNase III processing intermediates that carry 5' phosphates and 2-nt overhangs with free 3' hydroxyl groups. Despite the structural symmetry of a duplex siRNA, the nucleotide sequence asymmetry can generate a bias for preferred loading of one of the two duplex-forming strands into the RNA-induced silencing complex (RISC). Here we show that the 5'-phosphorylation status of the siRNA strands also acts as an important determinant for strand selection. 5'-O-methylated siRNA duplexes refractory to 5' phosphorylation were examined for their biases in siRNA strand selection. Asymmetric, single methylation of siRNA duplexes reduced the occupancy of the silencing complex by the methylated strand with concomitant elimination of its off-targeting signature and enhanced off-targeting signature of the phosphorylated strand. Methylation of both siRNA strands reduced but did not completely abolish RNA silencing, without affecting strand selection relative to that of the unmodified siRNA. We conclude that asymmetric 5' modification of siRNA duplexes can be useful for controlling targeting specificity.
Strand-specific 5'-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity.
No sample metadata fields
View SamplesThe TRIM-NHL protein Brain tumor (Brat) acts as a tumor suppressor in the Drosophila brain, but how it suppresses tumor formation is not completely understood. Here, we combine temperature controlled brat RNAi with transcriptome analysis to identify the immediate brat targets in Drosophila neuroblasts. Besides the known target Deadpan (Dpn), our experiments identify the transcription factor Zelda (Zld) as a critical target of brat. Our data show that Zld is expressed in neuroblasts and required to allow re-expression of Dpn in transit amplifying intermediate neural progenitors. Upon neuroblast division, Brat is enriched in one daughter cell where its NHL domain directly binds to specific motifs in the 3'UTR of dpn and zld mRNA to mediate their degradation. In brat mutants, both Dpn and Zld continue to be expressed, but inhibition of either transcription factor prevents tumorigenesis. Our genetic and biochemical data indicate that Dpn inhibition requires higher Brat levels than Zld inhibition and suggest a model where stepwise post-transcriptional inhibition of distinct factors ensures sequential generation of fates in a stem cell lineage. Overall design: Comparison of transcriptomes of Drosophila melanogaster control and brat RNAi larval brain type II neural stem cell lineages.
The tumor suppressor Brat controls neuronal stem cell lineages by inhibiting Deadpan and Zelda.
Specimen part, Subject
View SamplesmicroRNAs, important regulators of cell proliferation and apoptosis, have been shown to be involved in the pathogenesis of acute myeloid leukemia in adulthood AML. However, comprehensive studies in AML of children and adolescents are missing so far. We investigated the miRNA expression profiles of different AML subtypes from 102 pediatric patients in comparison to CD34+ cells from healthy donors and adult AML patients, in order to identify differentially expressed miRNAs. Pediatric samples with core factor binding acute myeloid leukemia and promyelocytic leukemia could be distinguished from each other and MLL rearranged AML subtypes by 9 and 18 miRNAs, respectively. miR-126, -146a, -181a/b, -100, and miR-125b were identified as highest differentially expressed with marked difference of expression between pediatric and adulthood samples of the same cytogenetic subgroup. We next isolated the miRNA targeting complex from t(8;21) and t(15;17) cell line models and comprehensively identified bound miRNAs and targeted mRNAs by a newly devised immunoprecipitation assay followed by rapid microarray detection. Our findings indicate separate binding preferences for the four human Argonaute proteins. Subsequent bioinformatic analysis revealed a concerted action of different Ago proteins in the regulation of AML-relevant pathways, providing an experimental based database of miRNA-mRNA target interaction in Argonaute proteins.
MicroRNAs distinguish cytogenetic subgroups in pediatric AML and contribute to complex regulatory networks in AML-relevant pathways.
Specimen part
View Samples