Natural grape-juice fermentations involve the sequential development of different yeast species which strongly influence the chemical and sensorial traits of the final product. In the present study,we aimed to examine the transcriptomic response of Saccharomyces cerevisiae to the presence of Hanseniaspora guilliermondii wine fermentation.
Genomic expression program of Saccharomyces cerevisiae along a mixed-culture wine fermentation with Hanseniaspora guilliermondii.
Treatment, Time
View SamplesBackground. Although the emergence of RNA sequencing (RNA-seq), microarrays remain in widespread use for gene expression analysis in the clinic. There are over 767,000 RNA microarrays from human samples in public repositories, which are an invaluable resource for biomedical research and personalized medicine. The absolute gene expression analysis allows the transcriptome profiling of all expressed genes under the specific biological condition without the need of a reference sample. However, the background fluorescence represents a challenge to determine the absolute gene expression in microarrays. Given that the Y chromosome is absent in female subjects, we used it as a new approach for absolute gene expression analysis in which the fluorescence of the Y chromosome genes of female subjects was used as the background fluorescence for all the probes in the microarray. This fluorescence was used to establish an absolute gene expression threshold, allowing the differentiation between expressed and non-expressed genes in microarrays.
A novel approach for human whole transcriptome analysis based on absolute gene expression of microarray data.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics.
Cell line, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reconstruction of gene regulatory networks reveals chromatin remodelers and key transcription factors in tumorigenesis.
Specimen part, Cell line
View SamplesRetinoic acid (RA) triggers physiological processes by activating heterodimeric transcription factors comprising retinoic acid (RARa,b,g) and retinoid X (RXRa,b,g) receptors. How a single signal induces highly complex temporally controlled networks that ultimately orchestrate physiological processes is unclear. Using an RA-inducible differentiation model we defined the temporal changes in the genome-wide binding patterns of RARg and RXRa and correlated them with transcription regulation. Unexpectedly, both receptors displayed a highly dynamic binding, with different RXRa heterodimers targeting identical loci. Comparison of RARg and RXRa co-binding at RA-regulated genes identified putative RXRa-RARg target genes that were validated with subtype-selective agonists. Gene regulatory decisions during differentiation were inferred from transcription factor target gene information and temporal gene expression. This analysis revealed 6 distinct co-expression paths of which RXRa-RARg is associated with transcription activation, while Sox2 and Egr1 were predicted to regulate repression. Finally, RXRa-RARg regulatory networks were reconstructed through integration of functional co-citations. Our analysis provides a dynamic view of RA signalling during cell differentiation, reveals RA heterodimer dynamics and promiscuity, and predicts decisions that diversify the RA signal into distinct gene-regulatory programs.
Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics.
Cell line, Time
View SamplesSenescent cells secrete a plethora of factors with potent paracrine signaling capacity. Strikingly, senescence, which acts as a defense against cell transformation, exerts pro-tumorigenic activities through its secretome by promoting numerous tumor-specific features, such as cellular proliferation, epithelial-mesenchymal transition and invasiveness. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has the unique activity of activating cell death exclusively in tumor cells. Given that the senescence-associated secretome supports cell transformation, we asked whether factor(s) of this secretome would establish a program required for the acquisition of TRAIL sensitivity. We found that conditioned media from several types of senescent cells (CMS) efficiently sensitized pre-transformed cells to TRAIL, while the same was not observed with normal or immortalized cells. Dynamic transcription profiling analysis of CMS-exposed pre-transformed cells revealed paracrine autoregulatory loop of senescence-associated secretome factors and a dominant role of CMS-induced MYC. Sensitization to TRAIL coincided with MYC upregulation and massive changes in gene regulation. CMS-induced MYC silenced its target gene CFLAR, encoding the apoptosis inhibitor FLIPL, thus leading to the acquisition of TRAIL sensitivity. Altogether, our results reveal that senescent cell-secreted factors exert a TRAIL sensitizing effect on pre-transformed cells by modulating the expression of MYC and CFLAR. Notably, CMS dose-dependent sensitization to TRAIL was observed with TRAIL-insensitive cancer cells and confirmed in co-culture experiments. Dissection and characterization of TRAIL-sensitizing CMS factors and the associated signaling pathway(s) may provide a mechanistic insight in the acquisition of TRAIL sensitivity and lead to novel concepts for the apoptogenic therapy of pre-malignant and TRAIL-resistant tumors.
Senescence-secreted factors activate Myc and sensitize pretransformed cells to TRAIL-induced apoptosis.
Cell line, Treatment, Time
View SamplesThe mechanistic links between transcription factors and the epigenetic landscape, which coordinate the deregulation of gene networks during cell transformation are largely unknown. We used an isogenic model of stepwise tumorigenic transformation of human primary cells to monitor the progressive deregulation of gene networks upon immortalization and oncogene-induced transformation. By combining transcriptome and epigenome data for each step during transformation and by integrating transcription factor (TF) - target gene associations, we identified 142 Tfs and 24 chromatin remodelers/modifiers (CRMs), which are preferentially associated with specific co-expression paths that originate from deregulated gene programming during tumorigenesis. These Tfs are involved in the regulation of divers processes, including cell differentiation, immune response and establishment/modification of the epigenome. Unexpectedly, the analysis of chromatin state dynamics revealed patterns that distinguish groups of genes, which are not only co-regulated but also functionally related. Further decortication of TF targets enabled us to define potential key regulators of cell transformation, which are engaged in RNA metabolism and chromatin remodelling. Our study suggests a direct implication of CRMs in oncogene-induced tumorigenesis and identifies new CRMs involved in this process. This is the first comprehensive view of gene regulatory networks that are altered during the process of stepwise human cellular tumorigenesis in a virtually isogenic system.
Reconstruction of gene regulatory networks reveals chromatin remodelers and key transcription factors in tumorigenesis.
Specimen part, Cell line
View SamplesA toxicogenomic analysis from liver of different pharmacological active coumarins (mammea A/BA+A/BB 3:1 and soulatrolide ) was performed on mice treated (20mg/kg/daily) for a whole week to evaluate if such compounds possess or could develop a hazardous profile on liver.
Toxicogenomic analysis of pharmacological active coumarins isolated from Calophyllum brasiliense.
Sex, Specimen part, Treatment
View SamplesBackground
Gene expression profile of cervical and skin tissues from human papillomavirus type 16 E6 transgenic mice.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reconstructed cell fate-regulatory programs in stem cells reveal hierarchies and key factors of neurogenesis.
Specimen part, Time
View Samples