Most vertebrate organs are composed of epithelium surrounded by support and stromal tissues formed from mesenchyme cells, which are not generally thought to form organized progenitor pools. Here we use clonal cell labeling with multicolor reporters to characterize individual mesenchymal progenitors in the developing mouse lung. We observe a diversity of mesenchymal progenitor populations with different locations, movements, and lineage boundaries. Airway smooth muscle (ASM) progenitors map exclusively to mesenchyme ahead of budding airways. Progenitors recruited from these tip pools differentiate into ASM around airway stalks; flanking stalk mesenchyme can be induced to form an ASM niche by a lateral bud or by an airway tip plus focal Wnt signal. Thus, mesenchymal progenitors can be organized into localized and carefully controlled domains that rival epithelial progenitor niches in regulatory sophistication.
Mesenchymal cells. Defining a mesenchymal progenitor niche at single-cell resolution.
Specimen part, Treatment
View SamplesStudies in vitro and in mice indicate a role for Coenzyme Q10 (CoQ10) in gene expression. To determine this function in relationship to physiological readouts, a 2-week supplementation study with the reduced form of CoQ10 (ubiquinol, Q10H2, 150 mg/d) was performed in 53 healthy males. Mean CoQ10 plasma levels increased 4.8-fold after supplementation. Transcriptomic and bioinformatic approaches identified a gene-gene interaction network in CD14-positive monocytes, which functions in inflammation, cell differentiation and PPAR-signaling. These Q10H2-induced gene expression signatures were also described previously in liver tissues of SAMP1 mice. Biochemical as well as NMR-based analyses showed a reduction of LDL cholesterol plasma levels after Q10H2 supplementation. This effect was especially pronounced in atherogenic small dense LDL particles (19-21 nm, 1.045 g/l). In agreement with gene expression signatures, Q10H2 reduces the number of erythrocytes but increases the concentration of reticulocytes. In conclusion, Q10H2 induces characteristic gene expression patterns, which are translated into reduced LDL cholesterol levels and erythropoiesis in humans.
Ubiquinol-induced gene expression signatures are translated into altered parameters of erythropoiesis and reduced low density lipoprotein cholesterol levels in humans.
Sex, Disease, Disease stage
View SamplesCalorie restriction (CR) has been shown to extend life- and health-span in model species. For most humans, a life-long CR diet is too arduous to adhere to. The aim of this study was to explore whether weekly intermittent CR can 1) provide long-term beneficial effects and 2) counteract diet-induced obesity in male aging mice. In this study, we have exposed C57Bl/6J mice for 24 months to an intermittent (INT) diet, alternating weekly between CR of a control diet and ad libitum moderate-fat (MF) feeding. This weekly intermittent CR significantly counteracted the adverse effects of the MF diet on mortality, body weight and liver health markers in male 24-month-old mice. Hepatic gene expression profiles of INT-exposed animals appeared much more comparable to CR than to MF-exposed mice. At 12 months of age, a subgroup of MF-exposed mice was transferred to the INT diet. Gene expression profiles in the liver of the 24-month-old diet switch mice were highly similar to the INT-exposed mice. However, a small subset of genes was consistently changed by the MF diet during the first phase of life. Weekly intermittent CR largely, but not completely, reversed adverse effects caused by a MF diet.
Intermittent calorie restriction largely counteracts the adverse health effects of a moderate-fat diet in aging C57BL/6J mice.
Sex, Age, Specimen part
View SamplesCalorie restriction (CR) is a dietary regimen that supports healthy aging. In this study we investigated the systemic and liver-specific responses caused by a diet switch to a medium-fat (MF) diet in 24-month-old life-long, CR-exposed mice. This study aimed to increase the knowledge base on dietary alterations of gerontological relevance. Nine-week-old C57BL/6J mice were exposed either to a control, CR or MF diet. At the age of 24 months, a subset of mice of the CR group was transferred to ad libitum MF feeding (CR-MF).The mice were sacrificed at the age of 28 months, then biochemical and molecular analyses were performed. Our results showed that, despite the long-term exposure to the CR regimen, mice in the CR-MF group displayed hyperphagia, rapid weight gain, and hepatic steatosis. However, no hepatic fibrosis/injury or alteration in CR-improved survival was observed in the diet switch group. The liver transcriptomic profile of CR-MF mice largely shifted to a profile similar to the MF-fed animals but leaving ~22% of the 1578 differentially regulated genes between the CR and MF diet groups comparable with the expression of the life-long CR group. Therefore, although the diet switch was performed at an old age, the CR-MF-exposed mice showed plasticity in coping with the challenge of a MF diet without developing severe liver pathologies.
Plasticity of lifelong calorie-restricted C57BL/6J mice in adapting to a medium-fat diet intervention at old age.
Sex
View SamplesBackground: Exercise has a positive effect on overall health. This study was performed to get an overview of the effects of mixed exercise training on skeletal muscl
Identification of human exercise-induced myokines using secretome analysis.
Sex, Age, Race
View SamplesNatural grape-juice fermentations involve the sequential development of different yeast species which strongly influence the chemical and sensorial traits of the final product. In the present study,we aimed to examine the transcriptomic response of Saccharomyces cerevisiae to the presence of Hanseniaspora guilliermondii wine fermentation.
Genomic expression program of Saccharomyces cerevisiae along a mixed-culture wine fermentation with Hanseniaspora guilliermondii.
Treatment, Time
View SamplesWe treated logarithmically growing cultures of E.coli with a sub-lethal dose of an antimicrobial arylamide compound (PMX 10070) and Polymyxin B sulfate to measure transcriptional responses in an effort to understand mechanism of action
Antibacterial mechanism of action of arylamide foldamers.
No sample metadata fields
View SamplesThe NuRD complex is generally thought to repress transcription at both hyper- and hypomethylated regions in the genome. In addition, the complex is involved in the DNA damage response. Here, we show that ZMYND8 bridges NuRD to a number of putative DNA-binding zinc finger proteins. The ZMYND8 MYND domain directly interacts with PPPL? motifs in the NuRD subunit GATAD2A. Furthermore, GATAD2A and GATAD2B exclusively form homodimers and they thus define mutually exclusive NuRD subcomplexes. ZMYND8 and MBD3 share a large number of genome-wide binding sites, mostly active promoters and enhancers. Depletion of ZMYND8 does not affect NuRD occupancy genome-wide and expression of NuRD/ZMYND8 target genes in steady-state asynchronous cells. However, ZMYND8 facilitates immediate recruitment of GATAD2A/NuRD to induced sites of DNA damage. These results thus show that a specific substoichiometric interaction with a NuRD subunit paralogue provides unique functionality to a distinct NuRD subcomplex. Overall design: RNA-seq samples for HeLa FRT-TO mock, ZMYND8KO, and ZMYND8KO-rescue cells
ZMYND8 Co-localizes with NuRD on Target Genes and Regulates Poly(ADP-Ribose)-Dependent Recruitment of GATAD2A/NuRD to Sites of DNA Damage.
Subject
View SamplesBackground: Exercising is know to have an effect on exercising skeletal muscle, but unkown is the effect on non-exercising skeletal muscle. Gene expression changes in the non-exercising skeletal muscle would point to a signalling role of skeletal muscle
Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle.
Sex, Age, Specimen part, Race, Subject, Time
View SamplesTo define and compare the genome-wide transcriptional signatures of Notch1+ cells in intestinal tumors and in normal ISCs we performed Affymetrix analyses of these two populations.
Lineage tracing of Notch1-expressing cells in intestinal tumours reveals a distinct population of cancer stem cells.
Specimen part
View Samples