Several bacterial human pathogens regulate the production of virulence factors by temperature, expressing them only at 37 C. Accordingly we show that the production of all P. aeruginosa virulence factors that are dependent on the QS transcriptional regulator RhlR, but only a fraction that are activated by LasR, are induced at 37 C compared to 30 C or 25 C. The RhlR-dependent induction at 37 C is a posttranscriptional effect due to an RNA thermometer of the ROSE family that thermoregulates the expression of rhlAB operon involved in rhamnolipids production, a virulence associated trait. This RNA structure also affects the expression of the downstream rhlR gene. A second thermometer is present upstream lasI and causes a reduced expression of this gene at lower temperatures without causing a significant decrease of the autoinducer 3-oxo-dodecanoyl homoserine lactone.
Regulation of Pseudomonas aeruginosa virulence factors by two novel RNA thermometers.
No sample metadata fields
View SamplesCorrelate the gene expression profiles with the most relevant patterns of chromosome abnormalities (cytogenetic subgroups of meningiomas) and the gene expression profiles could help to explain the differences in clinical behaviour of meningiomas.
Gene expression profiles of meningiomas are associated with tumor cytogenetics and patient outcome.
Sex, Age, Disease stage
View SamplesBisphenol-A is a widespread endocrine disruptor chemical. In utero or perinatal exposure to bisphenol-A (BPA), leads to impaired glucose metabolism during adulthood. To investigate the consequences of the exposure to bisphenol-A during development in pancreatic beta-cell growth
Maternal Exposure to Bisphenol-A During Pregnancy Increases Pancreatic β-Cell Growth During Early Life in Male Mice Offspring.
Sex, Specimen part
View SamplesChoroid plexus carcinomas (CPC) are poorly understood and frequently lethal brain tumors with minimal treatment options. Using a new mouse model of the disease and a large cohort of human CPCs [GSE60892; GSE60899], we performed a cross-species, genome-wide search for novel oncogenes within syntenic regions of chromosome gain. TAF12, NFYC and RAD54L, co-located on human chromosome 1p32-35.3 and mouse chromosome 4qD1-D3, were identified as oncogenes that are gained in tumors in both species and required to initiate and progress the disease in mice. TAF12 and NFYC are transcription factors that regulate the epigenome, while RAD54L plays a central role in DNA repair. Our data identify a group of concurrently gained, novel oncogenes that cooperate in the formation of CPC and unmask potential new avenues for therapy.
Cross-Species Genomics Identifies TAF12, NFYC, and RAD54L as Choroid Plexus Carcinoma Oncogenes.
No sample metadata fields
View SamplesUOK257 cell line was derived from a BHD patient. It harbors a germline mutation in FLCN (c.1285dupC) and LOH. UOK257-2 cells were generated from UOK257 cells by introducing wildtype FLCN using retrovirus. FLCN inactivation induces TFE3 transcriptional activity by increasing its nuclear localization. Thus expression microarray was used to identify the genes regulated by FLCN and TFE3.
The UOK 257 cell line: a novel model for studies of the human Birt-Hogg-Dubé gene pathway.
Cell line
View SamplesPrevious studies have shown that ischemia alters gene expression in normal and malignant tissues. There are no studies that evaluated effects of ischemia in renal tumors. This study examines the impact of ischemia and tissue procurement conditions on RNA integrity and gene expression in renal cell carcinoma.
Impact of ischemia and procurement conditions on gene expression in renal cell carcinoma.
Specimen part, Treatment, Subject
View SamplesWe sequenced mRNA from triplicate log-phase cultures of BY4741 (WT) transformed with pRS313-HA3-SSN6 and taf14D transformed with pRS313-HA3-SSN6 (empty vector), full-length pRS313-TAF14-HA3-SSN6, or pRS313-taf14W81A-HA3-SSN6 cultured in synthetic complete media lacking histidine. Overall design: Examination of changes in gene expression when the YEATS domain of Taf14 is mutated so it cannot bind acetyl-H3.
Association of Taf14 with acetylated histone H3 directs gene transcription and the DNA damage response.
Subject
View SamplesHuntington neurodegenerative disease (HD) is associated with extensive down-regulation of neuronal genes. We show preferential down-regulation of super-enhancer-regulated neuronal function genes in the striatum of HD mice. Striatal super-enhancers display extensive H3K27 acetylation within gene bodies and drive transcription characterized by low levels of paused RNAPII. Down-regulation of gene expression is associated with diminished H3K27 acetylation and RNAPII recruitment. Striatal super-enhancers are enriched in binding motifs for Gata transcription factors, such as Gata2 regulating striatal identity genes. Thus, enhancer topography and transcription dynamics are major parameters determining the propensity of a gene to be deregulated in a neurodegenerative disease. Overall design: RNA profiles in Striatum of WT and R6/1 mice by deep sequencing using Illumina HiSeq 2000.
Altered enhancer transcription underlies Huntington's disease striatal transcriptional signature.
No sample metadata fields
View SamplesPatient derived xenografts (PDX) were created from two triple-negative breast cancers (PDX-110 and PDX-332) taken at the time of surgery from drug-naive patients. Freshly sorted epithelial cells were profiled by single-cell RNA-seq (scRNA-seq) using a 10X Genomics Chromium System. Overall design: Transcriptional profiling was completed for 10,060 total epithelial cells from PDX-110 and 14,681 total epithelial cells from PDX-322.
Barcoding reveals complex clonal behavior in patient-derived xenografts of metastatic triple negative breast cancer.
Specimen part, Subject
View SamplesCutaneous malignant melanoma is among the most deadly human cancers, broadly resistant to most clinical therapies. A majority of patients with BRAFV600E melanomas respond well to inhibitors such as vemurafenib, but all ultimately relapse. Moreover, there are no viable treatment options available for other non-BRAF melanoma subtypes in the clinic. A key to improving treatment options lies in a better understanding of mechanisms underlying melanoma progression, which are complex and heterogeneous. In this study we perform gene expression profilling of highly and poorly malignant melanocytic tumors from genetically engineered mouse models to discover important drivers of cancer progression.
Integrated Genomics Identifies miR-32/MCL-1 Pathway as a Critical Driver of Melanomagenesis: Implications for miR-Replacement and Combination Therapy.
Specimen part
View Samples