refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 145 results
Sort by

Filters

Technology

Platform

accession-icon GSE56602
Two-Track Epigenetic Remodeling and Backtracking to Embryonic Stem Cell Bivalency in B-cell Acute Lymphoblastic Leukemias
  • organism-icon Homo sapiens
  • sample-icon 81 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st), Illumina HumanMethylation450 BeadChip (HumanMethylation450_15017482), Illumina HiSeq 2000

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Epigenetic remodeling in B-cell acute lymphoblastic leukemia occurs in two tracks and employs embryonic stem cell-like signatures.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE56599
Expression data of pediatric B-cell acute leukemias
  • organism-icon Homo sapiens
  • sample-icon 81 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We investigated DNA methylomes of 227 pediatric B-cell acute lymphoblastic leukemias (B-ALLs) using whole-genome bisulfite sequencing and high-definition microarrays, along with RNA expression profiles.

Publication Title

Epigenetic remodeling in B-cell acute lymphoblastic leukemia occurs in two tracks and employs embryonic stem cell-like signatures.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP021911
Small RNA sequencing of human preovulatory cumulus and mural granulosa cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

The granulosa cells in the mammalian ovarian follicle respond to gonadotropin signalling and are involved in the processes of folliculogenesis and oocyte maturation. Studies on gene expression and regulation in human granulosa cells are of interest due to their potential for estimating the oocyte viability and IVF success. However, the post-transcriptional gene expression studies on miRNA level in the human ovary have been scarce. The current study determined the miRNA profile by deep sequencing of the two intrafollicular somatic cell types: mural and cumulus granulosa cells isolated from women undergoing controlled ovarian stimulation and in vitro fertilization. Overall design: Paired cumulus and mural granulosa samples were analysed from 3 women participating in IVF procedure. Libraries of all 6 samples were sequenced twice, generating 2 technical replicates for each sample. Differential gene expression study was performed on the pooled results of technical replicates.

Publication Title

Research resource: small RNA-seq of human granulosa cells reveals miRNAs in FSHR and aromatase genes.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP021912
High-throughput RNA sequencing of human preovulatory cumulus and mural granulosa cells (mRNA)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The granulosa cells in the mammalian ovarian follicle respond to gonadotropin signalling and are involved in the processes of folliculogenesis and oocyte maturation. Studies on gene expression and regulation in human granulosa cells are of interest due to their potential for estimating the oocyte viability and IVF success. The current study determined the mRNA profile by deep sequencing of the two intrafollicular somatic cell types: mural and cumulus granulosa cells isolated from women undergoing controlled ovarian stimulation and in vitro fertilization. Overall design: Paired cumulus and mural granulosa samples were analysed from 3 women participating in IVF procedure. Differential gene expression study was performed. The identified gene expression profile was also used for predicting targets for miRNAs that were also identified from the same samples (GSE46489).

Publication Title

Research resource: small RNA-seq of human granulosa cells reveals miRNAs in FSHR and aromatase genes.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP065865
Gene Networks and Blood Biomarkers of Methamphetamine-Associated Psychosis: A Preliminary Integrative RNA-Sequencing Report
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The clinical presentation, course and treatment of methamphetamine-associated psychosis (MAP) are similar to that observed in schizophrenia (SCZ) and subsequently MAP has been hypothesized as a pharmacological and environmental model of SCZ. However, several challenges currently exist in accurately diagnosing MAP at the molecular and neurocognitive level before the MAP model can contribute to the discovery of SCZ biomarkers. We directly assessed subcortical brain structural volumes and clinical parameters of MAP within the framework of an integrative genome-wide RNA-Seq blood transcriptome analysis of subjects diagnosed with MAP (N=10), METH-dependency without psychosis (MA) (N=10) and healthy controls (N=10). We used RNA-Sequencing gene expression to characterize molecular signatures associated to METH and MAP status compared to healthy control subjects. Overall design: Peripheral blood luekocytes gene expression was subject to transcriptional analysis for 10 MAP subjects, 10 subjects with METH-dependency without psychotic symptomics and 10 healthy controls.

Publication Title

Candidate gene networks and blood biomarkers of methamphetamine-associated psychosis: an integrative RNA-sequencing report.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29962
Nutrient-dependent growth of NIH3T3 and NIH3T3 K-ras cell lines.
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Expression profiling of normal NIH3T3 and transformed NIH3T3 K-ras cell lines grown for 72 hours in optimal glucose availability (25 mM glucose) or low glucose availability (1 mM). Low glucose induces apoptosis in transformed cells as compared to normal ones.

Publication Title

Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE55587
Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The tumor microenvironment plays a critical role in cancer progression, but the precise mechanisms by which stromal cells influence the tumor epithelium are poorly understood. The signaling adapter p62 has been implicated as a positive regulator of epithelial tumorigenesis; however, its role in the stroma is unknown. We show here that p62 levels are reduced in the stroma of several tumors. Also, orthotopic and organotypic studies demonstrate that the loss of p62 in the tumor microenvironment or stromal fibroblasts resulted in increased tumorigenesis of epithelial prostate cancer cells. The mechanism involves the regulation of cellular redox through an mTORC1/c-Myc pathway of stromal glucose and amino acid metabolism. Inhibition of the pathway by p62 deficiency results in increased stromal IL-6 production, which is required for tumor promotion in the epithelial compartment. Thus, p62 is an anti-inflammatory tumor suppressor that acts through modulation of metabolism in the tumor stroma.

Publication Title

Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP162656
Role of ACLY in gene regulation during adipocyte differentiation
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

RNA-sequencing from Aclyf/f and Acly-/- preadipocytes generated from Aclyf/f mice and induced to differentiate to adipocytes. Overall design: Examination of gene expression during adipocyte differentiation, with Acly intact or deleted

Publication Title

Adipocyte ACLY Facilitates Dietary Carbohydrate Handling to Maintain Metabolic Homeostasis in Females.

Sample Metadata Fields

Specimen part, Cell line, Subject, Time

View Samples
accession-icon GSE78753
A Preclinical Model for ER-Positive Breast Cancer Points to the Epithelial Microenvironment as Determinant of Luminal Phenotype and Hormone Response
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A Preclinical Model for ERα-Positive Breast Cancer Points to the Epithelial Microenvironment as Determinant of Luminal Phenotype and Hormone Response.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38277
Lsd1 coordinates trophoblast development by retaining stem cells in their niche and directing cell fate
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Stem cells reside in specific niches providing stemness-maintaining environments. Thus, the regulated migration from these niches is associated with differentiation onset. However, mechanisms retaining stem cells in their niche remain poorly understood. Here, we show that the epigenetic regulator lysine-specific demethylase 1 (Lsd1) organises the trophoblast niche of the early mouse embryo by coordinating migration and invasion of trophoblast stem cells (TSCs). Lsd1 deficiency leads to the depletion of the stem cell pool resulting from precocious migration of TSCs.

Publication Title

Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells.

Sample Metadata Fields

Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact