mRNA gene expression was measured in intact female Sprague-Dawley rats at 6 (young), 26 (adult) and 52 (older) weeks of age at the time of fracture. Samples were collected at 0, 0.4, 1, 2, 4, and 6 weeks after fracture. RNA from two rats were pooled for each Affymetrix Rat U34A array. Mid-shaft, simple, transverse left femoral fractures were induced after retrograde intramedullary rod fixation with a Bonnarens and Einhorn device. Samples were collected from one third of the femoral length, centered on the fracture site, including the external callus, cortical bone, and marrow elements.
Altered mRNA expression of genes related to nerve cell activity in the fracture callus of older rats: A randomized, controlled, microarray study.
No sample metadata fields
View SamplesmRNA gene expression was measured in rats at 6 (young), 26 (adult) and 52 (older) weeks of age at the time of fracture. Samples were collected at 0, 0.4, 1, 2, 4, and 6 weeks after fracture. RNA from two rats were pooled for each Affymetrix Rat U34A array.
Altered mRNA expression of genes related to nerve cell activity in the fracture callus of older rats: A randomized, controlled, microarray study.
No sample metadata fields
View SamplesStudy of rat femur fracture healing in young (6 weeks old), adult (26 weeks old), and older (52 weeks old) rats with samples collected at 0 time (no fracture) and at 0.4, 1, 2, 4, and 6 weeks after fracture. RNA from two rats were pooled for each array.
Altered mRNA expression of genes related to nerve cell activity in the fracture callus of older rats: A randomized, controlled, microarray study.
No sample metadata fields
View SamplesMid-shaft fracture stimulates bone lengthening by increasing linear growth at the growthplate. This project studied changes in mRNA in the proximal growthplate after a mid-shaft fracture in a rat model.
Evidence for overgrowth after midfemoral fracture via increased RNA for mitosis.
No sample metadata fields
View SamplesmRNA used for the analysis of these microarrays were previously analyzed for 34 genes by reverse transcription - polymerase chain reaction in Desai BJ et al., J.Orthop.Trauma 17: 689-698, 2003. These two data sets were subsequently studied to compare the results from these two different methods for mRNA quantitation. The comparison was publised in "Comparison of mRNA gene expression by RT-PCR and DNA microarray" by W. Etienne, M.H. Meyer, J. Peppers, and R.A. Meyer, Jr., BioTechniques 36 (4): 618-626, April 2004.
Comparison of mRNA gene expression by RT-PCR and DNA microarray.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Histone Deacetylases 1 and 2 Regulate Microglia Function during Development, Homeostasis, and Neurodegeneration in a Context-Dependent Manner.
Sex, Age, Specimen part, Treatment
View SamplesHdac1 and 2 are important regulators of developmental processes. In this study we created microglia specific compound Hdac1 and Hdac2 knock out mice. Pre-natal ablation of both Hdac1 and 2 from microglia leads to reduced cell number and altered cell morphology. To investigate how Hdac1 and 2 knock out in microglia alters cellular gene expression profile we carried out RNA-seq analysis at different time points. Overall design: We used FACS sorted microglia cells from control and Hdac1/2fl/flCx3cr1Cre (constituitive knockout) or Hdac1/2fl/flCx3cr1CreERT2 (inducible) mice at different time points viz. Embryonic day 16 (E16 - inducible knockout only), Post natal day 0 (P0), 2 and 6 weeks after birth
Histone Deacetylases 1 and 2 Regulate Microglia Function during Development, Homeostasis, and Neurodegeneration in a Context-Dependent Manner.
Age, Treatment, Subject
View SamplesEpigenetic alterations has been implicated in the pathology of several neurodegenerative diseases. To investigate the role of microglial Hdac1 and 2 in the pathogenesis of Alzheimer's disease (AD), we created microglia specific compound Hdac1 and Hdac2 knock out mice in 5X FAD background. Genetic ablation of Hdac1 and 2 from microglia reduced amyloid plaque burden and improved spatial learning and memory function.
Histone Deacetylases 1 and 2 Regulate Microglia Function during Development, Homeostasis, and Neurodegeneration in a Context-Dependent Manner.
Sex, Specimen part
View SamplesTo achieve the extreme nuclear condensation necessary for sperm function, most histones are replaced with protamines during spermiogenesis in mammals. Mature sperm retain only a small fraction of nucleosomes, which are, in part, enriched on gene regulatory sequences, and recent findings suggest that these retained histones provide epigenetic information that regulates expression of a subset of genes involved in embryo development after fertilization. We addressed this tantalizing hypothesis by analyzing two mouse models exhibiting abnormal histone positioning in mature sperm due to impaired poly(ADP-ribose) (PAR) metabolism during spermiogenesis and identified altered sperm histone retention in specific gene loci genome-wide using MNase digestion-based enrichment of mononucleosomal DNA. We then set out to determine the extent to which expression of these genes was altered in embryos generated with these sperm. For control sperm, most genes showed some degree of histone association, unexpectedly suggesting that histone retention in sperm genes is not an all-or-none phenomenon and that a small number of histones may remain associated with genes throughout the genome. The amount of retained histones, however, was altered in many loci when PAR metabolism was impaired. To ascertain whether sperm histone association and embryonic gene expression are linked, the transcriptome of individual 2-cell embryos derived from such sperm was determined using microarrays and RNA sequencing. Strikingly, a moderate but statistically significant portion of the genes that were differentially expressed in these embryos also showed different histone retention in the corresponding gene loci in sperm of their fathers. These findings provide new evidence for the existence of a linkage between sperm histone retention and gene expression in the embryo. Overall design: 9 WT samples in 3 groups of 3. Each group consists of 3 eggs fertilized by the same father. 9 KO samples in the same setup.
Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression.
No sample metadata fields
View SamplesHost-environment interfaces such as the dermis comprise tissue macrophages as the most abundant resident immune cell type. Diverse tasks, i.e. to resist against invading pathogens, to attract bypassing immune cells from penetrating vessels and to aid tissue development and repair require a dynamic postnatal coordination of tissue macrophages specification. Here, we delineated the postnatal development of dermal macrophages and their differentiation into distinct subsets by adapting single cell transcriptomics, fate-mapping and tissue imaging. We thereby identified a small phenotypically and transcriptionally distinct subset of embryo-derived skin macrophages that was maintained and largely excluded from the overall postnatal exchange by monocytes. These macrophages specifically interacted with dermal sensory nerves, surveilled and trimmed the myelin sheets and regulated axon sprouting after mechanical injury. In summary, our data show long-lasting functional specification of macrophages in the dermis that is driven by step-wise adaptation to guiding structures and ensures codevelopment of ontogenetically distinct cells within the same compartment. Overall design: Single Cell Sequencing was performed on CD45+CD11b+CD64+Lin-(lineage B220, CD3, NK1.1, Siglec-F, Ly6G) CX3CR1 (low, mid, high) macrophage subsets from mouse dermis after enzymatic digestion
A Subset of Skin Macrophages Contributes to the Surveillance and Regeneration of Local Nerves.
Age, Specimen part, Cell line, Subject
View Samples