This SuperSeries is composed of the SubSeries listed below.
Effects of Acute Prenatal Exposure to Ethanol on microRNA Expression are Ameliorated by Social Enrichment.
Sex
View SamplesIn this study, we tested if miRNAs are altered in amygdala and ventral striatum as a consequence of prenatal ethanol exposure and/or social enrichment. miRNA samples from 72 male and female adolescent rats were analyzed by RNA-Seq analysis and Affymetrix miRNA arrays. Several miRNAs showed significant changes due to prenatal ethanol exposure or social enrichment in one or both brain regions. Some of the miRNA changes caused by ethanol were reversed by social enrichment. The top predicted gene targets of these miRNAs were mapped and subjected to pathway enrichment analysis. We also directly examined the evidence for modulation of target mRNAs in whole transcriptome microarray data from the same rats. Among the pathways most strongly affected were p53, CREB, Glutamate and GABA signaling. Together, our data suggest a number of novel epigenetic mechanisms for social enrichment to reverse the effects of ethanol exposure.
Effects of Acute Prenatal Exposure to Ethanol on microRNA Expression are Ameliorated by Social Enrichment.
Sex
View SamplesTo compare the RNAs present in dendrites and somas of individual neurons, we manually separated the dendrites and soma of primary mouse hippocampal neurons using a micropipette and performed RNA-sequencing on each subcellular fraction such that we obtained the subcellular transcriptomes of the same cell. Overall design: 16 individual neurons were collected and dissected (yielding a total of 32 soma and dendrite samples) from multiple cultures across multiple days. ERCC spike-in control RNA was added to each sample.
Comprehensive catalog of dendritically localized mRNA isoforms from sub-cellular sequencing of single mouse neurons.
Cell line, Subject
View SamplesEthanol inhibits the proliferation of neural stem cells in the fetal, adolescent, and adult brain. The consequences are cognitive deficits associated with fetal alcohol spectrum disorder and alcohol use disorder. We tested the hypothesis that ethanol affects progression through cell cycle checkpoints by differentially modifying transcriptional processes. Monolayer cultures of NS-5 neural stem cells were treated for 48 hr with the mitogenic agent FGF2 or the anti-mitogenic TGF1 in the absence or presence of ethanol. Cell cycle elongation was induced by a global down-regulation of genes involved in cell cycle progression, including the cyclin E system. Checkpoint regulation occurred downstream of p21 and Jun-oncogene signaling cascades. Thus, ethanol can affect cell cycle progression by altering transcript expression of strategic genes downstream of the G1/S checkpoint.
Ethanol-induced methylation of cell cycle genes in neural stem cells.
Specimen part, Treatment
View SamplesTranscriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.
Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.
Sex, Age, Disease, Disease stage
View SamplesPost mortem tissue was dissected from two groups of age and gender matched groups of Parkinson and Control subjects
Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.
Sex, Age, Disease, Disease stage
View SamplesPost mortem tissue was dissected from two groups of age and gender matched groups of Parkinson and Control subjects
Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.
Sex, Age, Disease, Disease stage
View SamplesPost mortem tissue was dissected from two groups of age and gender matched groups of Parkinson and Control subjects
Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.
Sex, Age, Disease, Disease stage
View SamplesPurpose: Investigate the molecular determinants of retinal regeneration in adult vertebrates by analyzing the gene expression profiles of control and post-lesion retina of adult zebrafish, a system that regenerates following injury.
Gene expression profiles of intact and regenerating zebrafish retina.
No sample metadata fields
View SamplesIn the growth plate, the reserve and perichondral zones have been hypothesized to have similar functions, but their exact functions are poorly understood. Our hypothesis was that significant differential gene expression exists between perichondral and reserve chondrocytes that may differentiate the respective functions of these two zones. Normal Sprague-Dawley rat growth plate chondrocytes from the perichondral zone (PC), reserve zone (RZ), proliferative zone (PZ), and hypertrophic zone (HZ) were isolated by laser microdissection and then subjected to microarray analysis. In order to most comprehensively capture the unique features of the two zones, we analyzed both the most highly expressed genes and those that were most significantly different from the proliferative zone (PZ) as a single comparator.
Microarray analysis of perichondral and reserve growth plate zones identifies differential gene expressions and signal pathways.
No sample metadata fields
View Samples