Whole-genome expression studies in peripheral tissues of patients affected by schizophrenia (SCZ) can provide new insights into the molecular basis of the disorder and innovative biomarkers that may be of great usefulness in the clinical practice. Recent evidence suggests that skin fibroblasts could represent a non-neural peripheral model useful to investigate molecular alterations in psychiatric disorders.
Altered gene expression in schizophrenia: findings from transcriptional signatures in fibroblasts and blood.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesThe underlying relation between Parkinson disease (PD) etiopathology and its major risk factor, aging, is largely unknown. The nature of the specific age-related mechanisms promoting PD onset is experimentally difficult to elucidate because aging is a highly complex process contributed by multiple factors. Recent evidence, however, established a strong and causative link between genome stability and aging. To investigate a possible nexus between DNA damage accumulation, aging, and PD we examined DNA repair pathways associated with aging in laboratory animal models and human cases. We demonstrate that dermal fibroblasts from PD patients display flawed nucleotide excision repair (NER) capacity and that NER-defective mice exhibit typical PD-like pathological alterations, including decreased dopaminergic innervation in the striatum, increased phospho-synuclein levels, and defects in mitochondrial respiration. NER mouse mutants are also more sensitive to the prototypical PD toxin MPTP and their transcriptomic landscape shares important similarities with that of PD patients. Overall, our results demonstrate that specific defects in DNA repair impact the dopaminergic system, are associated with human PD pathology, and might therefore constitute a novel risk factor for PD by affecting the aging process. Overall design: In total 8 samples were analyzed, 4 controls and 4 Ercc1 mutants.
Inefficient DNA Repair Is an Aging-Related Modifier of Parkinson's Disease.
Specimen part, Cell line, Subject
View SamplesSignalling pathways regulate all major cellular events in health and disease, including asthma development and progression. Complexity of human intracellular signalization can be explored using novel systemic approaches that exploit whole-transcriptome analysis. Cap-analysis-of-gene-expression (CAGE) is a method of choice for generating transcriptome libraries, as it interrogates only terminally capped mRNAs that have the highest probability to be translated into protein. In this study we for the first time systematically profiled differentially activated Intracellular Signalling Pathways (ISPs) in cultured primary human airway smooth muscle (ASM) cells from asthmatic (n=8) and non-asthmatic (n=6) subjects in a high-throughput assay, highlighting asthma-specific co-regulatory patterns. CAGE-libraries from primary human ASM cells were subject to massive parallel next generation sequencing, and a comprehensive analysis of ISP activation was performed using a recently developed technique OncoFinder. Analysis of 270 ISPs led to discovery of multiple pathways clearly distinguishing asthmatic from normal cells. In particular, we found 146 (p<0.05) and 103 (p<0.01) signalling pathways differentially active in asthmatic vs non-asthmatic samples. We identified seven clusters of coherently acting pathways functionally related to the disease. Pathways down-regulated in asthma mostly represented cell death-promoting pathways, whereas the up-regulated ones were mainly involved in cell growth and proliferation, inflammatory response and some specific reactions, including smooth muscle contraction and hypoxia - related signalization. Most of interactions uncovered in this study were not previously associated with asthma, suggesting that these results may be pivotal to development of novel therapeutic strategies that specifically address the ISP signature linked with asthma pathophysiology. Overall design: Capped mRNA profiles of primary bronchial smooth muscle cells from 8 asthmatic and 6 healthy donors were generated by deep sequencing using Illumina HiSeq1500.
Large-scale profiling of signalling pathways reveals an asthma specific signature in bronchial smooth muscle cells.
No sample metadata fields
View SamplesEvaluation of two commercial microarray platforms (Amersham CodeLink UniSet Human 10K I BioArray and Affymetrix GeneChip HG-U133A). Both platforms have been tested on gene expression profiling of MDA-MB-231 human metastatic breast cancer cells, cultured for 48 h in the absence (control) or presence (treated) of 32 µM resveratrol.
Strategies for comparing gene expression profiles from different microarray platforms: application to a case-control experiment.
Sex, Specimen part, Disease, Disease stage, Cell line, Compound
View SamplesBy employing FOXA2-deficient mouse models coupled with LIF repletion, we reveal definitive roles of uterine glands in pregnancy establishment.These studies provide original evidence that uterine glands synchronize embryo-endometrial interactions, coordinate on-time embryo implantation, and impact stromal cell decidualization, thereby ensuring embryo viability, placental growth, and pregnancy success. Overall design: Uterine transcriptomes of control and Foxa2-deficient mice were generated on gestational day (GD) 4 and GD 6 following LIF-repletion. All time points were done in quadruplicates.
Uterine glands coordinate on-time embryo implantation and impact endometrial decidualization for pregnancy success.
Specimen part, Cell line, Subject
View SamplesThe cell differentiation potential of 13-cis retinoic acid (RA) has not succeeded in the clinical treatment of glioblastoma (GBM) so far. However, RA may also induce the expression of disistance genes such as HOXB7 which can be suppressed by Thalidomide (THAL). Therefore, we tested if combined treatment with RA+THAL may inhibit growth of glioblastoma in vivo. Treatment with RA+THAL but not RA or THAL alone significantly inhibited tumour growth. The synergistic effect of RA and THAL was corroborated by the effect on proliferation of glioblastoma cell lines in vitro. HOXB7 was not upregulated but microarray analysis validated by real-time PCR identified four potential resistance genes (IL-8, HILDPA, IGFBPA, and ANGPTL4) whose upregulation by RA was suppressed by THAL. Furthermore, genes coding for small nucleolar RNAs (snoRNA) were identified as a target for RA for the first time, and their upregulation was maintained after combined treatment. Pathway analysis showed upregulation of the Ribosome pathway and downregulation of pathways associated with proliferation and inflammation. Combined treatment with RA + THAL delayed growth of GBM xenografts and suppressed putative resistance genes associated with hypoxia and angiogenesis. This encourages further pre-clinical and clinical studies of this drug combination in GBM.
Inhibition of 13-cis retinoic acid-induced gene expression of reactive-resistance genes by thalidomide in glioblastoma tumours in vivo.
Cell line, Treatment
View SamplesCirculating microvesicles (MVs) have been described as important players in cell-to-cell communication carrying biological information both in normal and pathologic condition. MVs released by cancer cells may incorporate biomolecules such as active lipids, proteins and RNA, which can be delivered and internalized by recipient cells potentially altering gene expression of receiving cells eventually impacting disease progression. In this study, we took advantage of a leukemia in vitro model to investigate MVs as vehicles of protein coding messages. Leukemic cell lines (K562, REH and SHI-1) carrying recurrent translocations were analyzed. In the leukemic cells these translocations are transcribed into oncogenic fusion transcripts. Here, using gene expression microarrays we monitored leukemic fusion transcripts as hallmarks of leukemic cells transcriptome to track mRNA transfer from parental cells to MVs. Transcriptome analysis of K562 cells and released MVs disclosed MVs as not just small scale cells. In fact, a number of transcripts related to membrane activity, cell surface receptors and extracellular communication were enriched in the MVs pool. On the other hand, sets of transcripts related to the basal cellular functions and transcripts of the BCR-ABL oncogenic pathway downstream of the fusion protein were detected in MVs as well as in parental K562 cells. Moreover, through co-culture analyses uptake of leukemic MVs in receiving cells was confirmed and an MV-dosage dependent increase of target cell proliferation was demonstrated.
Expression Profiling of Circulating Microvesicles Reveals Intercellular Transmission of Oncogenic Pathways.
Cell line
View SamplesLoss of muscle mass occurs in a variety of diseases including cancer, chronic heart failure, AIDS, diabetes and renal failure, often aggravating pathological progression. Preventing muscle wasting by promoting muscle growth has been proposed as a possible therapeutic approach. Myostatin is an important negative modulator of muscle growth during myogenesis and myostatin inhibitors are attractive drug targets. However, the role of the myostatin pathway in adulthood and the transcription factors involved in the signaling are unclear. Moreover recent results confirm that other TGF members control muscle mass. Using genetic tools we perturbed this pathway in adult myofibers, in vivo, to characterize the downstream targets and their ability to control muscle mass. Smad2 and Smad3 are the transcription factors downstream of myostatin/TGF and induce an atrophy program which is MuRF1 independent and requires FoxO activity. Furthermore Smad2/3 inhibition promotes muscle hypertrophy independent of satellite cells but partially dependent of mTOR signalling. Thus myostatin and Akt pathways cross-talk at different levels. These findings point to myostatin inhibitors as good drugs to promote muscle growth during rehabilitation especially when they are combined with IGF1-Akt activators.
Smad2 and 3 transcription factors control muscle mass in adulthood.
Specimen part, Time
View SamplesAIRmax and AIRmin mouse lines show a differential lung inflammatory response and differential lung tumor susceptibility after urethane treatment, thus constituting a good genetic model to investigate differences in gene expression profiles related to inflammatory response and lung tumor susceptibility. The transcript profile of ~24,000 known genes was analyzed in normal lung tissue of untreated and urethane-treated AIRmax and AIRmin mice. In lungs of untreated mice, inflammation associated genes involved in pathways such as leukocyte transendothelial migration, cell adhesion and tight junctions were differentially expressed in AIRmax versus AIRmin mice. Moreover, gene expression levels differed significantly in urethane-treated mice even at 21 days after treatment. In AIRmin mice, modulation of expression of genes involved in pathways associated with inflammatory response paralleled the previously observed persistent infiltration of inflammatory cells in the lung of these mice. In conclusion, a specific gene expression profile in normal lung tissue is associated with mouse line susceptibility or resistance to lung tumorigenesis and with different inflammatory response, and urethane treatment causes a long-lasting alteration of the lung gene expression profile that correlates with persistent inflammatory response of AIRmin mice.
Transcriptome of normal lung distinguishes mouse lines with different susceptibility to inflammation and to lung tumorigenesis.
Sex, Specimen part
View SamplesAnalysis of protein tyrosine phosphatase 1B (PTP1B) deficient mammary glands from nulliparous mice at estrous and pregnancy day 3, 7, 10 and 15. We used a genetically ablated PTP1B mouse model to gain a deeper knowledge of the role PTP1B plays in mammary gland development and to define the mechanism regulated by this phosphatase.
Protein tyrosine phosphatase 1B restrains mammary alveologenesis and secretory differentiation.
Specimen part
View Samples