This SuperSeries is composed of the SubSeries listed below.
Complex Interdependence Regulates Heterotypic Transcription Factor Distribution and Coordinates Cardiogenesis.
Specimen part
View SamplesIn the developing heart, heterotypic transcription factors (TFs) interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5 have been proposed as a mechanism for human congenital heart disease. In order to study the role of each TF during heart formation, embryonic stem (ES) cell-derived embryos were generated from KO ES cells for Tbx5, Nkx2-5 or both TFs.
Complex Interdependence Regulates Heterotypic Transcription Factor Distribution and Coordinates Cardiogenesis.
Specimen part
View SamplesFTY720/Fingolimod, an FDA-approved drug for treatment of multiple sclerosis, has beneficial effects in the CNS that are not yet well understood, independent of its effects on immune cell trafficking. Here we show that FTY720 enters the nucleus where it is phosphorylated by sphingosine kinase 2 (SphK2) and nuclear FTY720-P that accumulates there, binds and inhibits class I histone deacetylases (HDACs) enhancing specific histone acetylations. FTY720 is also phosphorylated in mice and accumulates in various brain regions, including hippocampus, inhibits HDACs and enhances histone acetylation and gene expression programs associated with memory and learning leading to improvement of memory impairment independently of its immunosuppressive actions. Our data suggest that sphingosine-1-phosphate and SphK2 play specific roles in memory functions and that FTY720 may be a useful adjuvant therapy to facilitate extinction of aversive memories.
Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory.
Sex, Age, Specimen part, Treatment
View SamplesFyn kinase has been implicated in multiple behavioral responses to ethanol and in the regulation of myelin gene expression. Here we tested whether Fyn kinase modulated basal or ethanol-responsive expression of genes regulated by acute ethanol in brain regions of the mesolimbocortical dopamine pathway.
Fyn-dependent gene networks in acute ethanol sensitivity.
Sex, Age, Specimen part, Treatment
View SamplesHuman lung cancer (A549) cells were treated 50uM of the metal cation-containing chemotherapeutic drug motexafin gadolinium (MGd) for 4, 12, and 24 hrs and expression compared to control cells (treated with 5% mannitol for the same length of time)
Motexafin gadolinium disrupts zinc metabolism in human cancer cell lines.
No sample metadata fields
View SamplesPersistent changes in brain gene expression are hypothesized to underlie thealtered neural signaling producing abusive consumption in AUD. To identify brain regional gene expression networks contributing to progressive ethanol consumption, we performed microarray and scale-free network analysis of expression responses in a C57BL/6J mouse model utilizing chronic intermittent ethanol by vapor chamber (CIE) in combination with limited access oral ethanol consumption.
Brain regional gene expression network analysis identifies unique interactions between chronic ethanol exposure and consumption.
Sex
View SamplesComparison of sense (forward probes) and antisense (reverse probes on U74 v1 gene arrays) transcripts in mouse kidney and brain.
Expression profiling of antisense transcripts on DNA arrays.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption.
Sex, Specimen part
View SamplesLasting behavioral and physiological changes such as abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to these brain adaptations leading to ethanol toxicity and abuse. Here we employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has previously been shown to induce progressive ethanol consumption in rodents. Brain regional expression networks contributing to CIE-induced behavioral changes were identified by microarray analysis across five brain regions in the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-120 hours following the last cycle of CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis of CIE vs. air-treated controls showed that long-lasting gene regulation occurred 5-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. In the majority of brain-regions, however, ethanol regulated gene expression changes occurred only immediately following CIE or within the first 8-hours of removal from ethanol.
Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption.
Sex, Specimen part
View SamplesLasting behavioral and physiological changes such as abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to these brain adaptations leading to ethanol toxicity and abuse. Here we employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has previously been shown to induce progressive ethanol consumption in rodents. Brain regional expression networks contributing to CIE-induced behavioral changes were identified by microarray analysis across five brain regions in the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-120 hours following the last cycle of CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis of CIE vs. air-treated controls showed that long-lasting gene regulation occurred 5-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. In the majority of brain-regions, however, ethanol regulated gene expression changes occurred only immediately following CIE or within the first 8-hours of removal from ethanol.
Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption.
Sex, Specimen part
View Samples