Whole-genome expression studies in peripheral tissues of patients affected by schizophrenia (SCZ) can provide new insights into the molecular basis of the disorder and innovative biomarkers that may be of great usefulness in the clinical practice. Recent evidence suggests that skin fibroblasts could represent a non-neural peripheral model useful to investigate molecular alterations in psychiatric disorders.
Altered gene expression in schizophrenia: findings from transcriptional signatures in fibroblasts and blood.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesmiR-92 enhances c-Myc induced apoptosis. In the R26MER/MER mouse embryonic fibroblasts (MEFs), a switchable variant of Myc, MycERT2, was knocked into the genomic region downstream of the constitutive Rosa26 promoter, allowing acute activation of c-Myc by 4-OHT-induced nuclear translocation. This in vitro system nicely recapitulates c-Myc-induced apoptosis, as activated MycERT2 induces strong p53-dependent apoptosis in response to serum starvation. Enforced miR-92 expression in three independent R26MER/MER MEF lines significantly enhanced Myc-induced apoptosis.
A component of the mir-17-92 polycistronic oncomir promotes oncogene-dependent apoptosis.
Specimen part
View SamplesDuring malignant disease progression, the extracellular matrix (ECM) of epithelial tumors accumulates inter-molecular cross-links between collagen strands; these cross-links enhance ECM stiffness and trigger tumor cell invasion and dissemination, but the mechanisms that regulate intra-tumoral collagen maturation have not been fully defined. Using a new mouse model of metastatic lung adenocarcinoma driven by mutant K-ras expression and Cdkn1a inactivation, we showed that tumor cell invasion and metastasis are driven by high expression of lysyl hydroxylase 2 (LH2), an enzyme that hydroxylates telomeric lysine (Lys) residues on collagen.
Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer.
Specimen part
View SamplesMalignant neoplasms adapt and evolve in response to changes in oncogenic signaling, tumor microenvironmental stresses,and therapeutic interventions. Cancer cell plasticity in response to these evolutionary pressures is foundational to tumor progression and maintenance and therapeutic resistance. Here, to elucidate the underlying molecular and cellularmechanisms of cancer cell plasticity, integrated system-level, functional and genetic analyses were conducted in a conditional oncogenic Kras model of pancreatic ductal adenocarcinoma (PDAC), amalignancy displaying remarkable phenotypic diversityand morphological heterogeneity. In this model, stochastic extinction of oncogenic Krassignaling and emergence ofKras-independent escaper populationsis associated withde-differentiation and aggressive biological behavior.Transcriptomic and functional analyses ofKras-independent escapers reveal mesenchymal reprogramming driven by aSmarcb1/Mycnetwork and independence from MAPK signaling.A somatic mosaic model of PDAC which can track evolving subpopulations shows that depletion of Smarcb1 activates theMyc network which results in an anabolic switch to increased protein metabolism and the adaptive activation of ERstress-induced survival pathways.Theelevated protein turnover made mesenchymal sub-populationshighly susceptible topharmacological and genetic perturbation of the cellular proteostatic machinery andthe IRE1-/MKK4 arm of the ER stress response pathway. Specifically, combination regimens impairing the unfolded protein responses (UPR) and the ER stress response can block the emergence of aggressive mesenchymal subpopulations in murine andpatient-derived PDACmodels. These molecular and biological insights inform a potential therapeutic strategy fortargeting aggressive mesenchymal features of PDAC.
Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer.
Specimen part
View SamplesMalignant neoplasms adapt and evolve in response to changes in oncogenic signaling, tumor microenvironmental stresses,and therapeutic interventions. Cancer cell plasticity in response to these evolutionary pressures is foundational to tumor progression and maintenance and therapeutic resistance. Here, to elucidate the underlying molecular and cellularmechanisms of cancer cell plasticity, integrated system-level, functional and genetic analyses were conducted in a conditional oncogenic Kras model of pancreatic ductal adenocarcinoma (PDAC), amalignancy displaying remarkable phenotypic diversityand morphological heterogeneity. In this model, stochastic extinction of oncogenic Krassignaling and emergence ofKras-independent escaper populationsis associated withde-differentiation and aggressive biological behavior.Transcriptomic and functional analyses ofKras-independent escapers reveal mesenchymal reprogramming driven by aSmarcb1/Mycnetwork and independence from MAPK signaling.A somatic mosaic model of PDAC which can track evolving subpopulations shows that depletion of Smarcb1 activates theMyc network which results in an anabolic switch to increased protein metabolism and the adaptive activation of ERstress-induced survival pathways.Theelevated protein turnover made mesenchymal sub-populationshighly susceptible topharmacological and genetic perturbation of the cellular proteostatic machinery andthe IRE1-/MKK4 arm of the ER stress response pathway. Specifically, combination regimens impairing the unfolded protein responses (UPR) and the ER stress response can block the emergence of aggressive mesenchymal subpopulations in murine andpatient-derived PDACmodels. These molecular and biological insights inform a potential therapeutic strategy fortargeting aggressive mesenchymal features of PDAC.
Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer.
Specimen part
View SamplesWe examined global gene expression patterns in response to PGC-1 expression in cells derived from liver or muscle.
Direct link between metabolic regulation and the heat-shock response through the transcriptional regulator PGC-1α.
Specimen part
View SamplesCell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood.
Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α.
Specimen part, Cell line
View SamplesSecreted proteins serve pivotal roles in the development of multicellular organisms, acting as structural matrix, extracellular enzymes and signal molecules. In this study we demonstrate, unexpectedly, that PGC-1, a critical transcriptional co-activator of metabolic gene expression, functions to down-regulate expression of diverse genes encoding secreted molecules and extracellular matrix (ECM) components to modulate the secretome. We show that both endogenous and exogenous PGC-1 down-regulate expression of numerous genes encoding secreted molecules. Mechanistically, results obtained using mRNA stability measurements as well as intronic RNA expression analysis are consistent with a transcriptional effect of PGC-1 on expression of genes encoding secreted proteins. Interestingly, PGC-1 requires the central heat shock response regulator HSF1 to affect some of its targets, and both factors co-reside on several target genes encoding secreted molecules in cells. Finally, using a mass spectrometric analysis of secreted proteins, we demonstrate that PGC-1 modulates the secretome of mouse embryonic fibroblasts (MEFs).
Control of Secreted Protein Gene Expression and the Mammalian Secretome by the Metabolic Regulator PGC-1α.
Specimen part
View SamplesPurpose: The objective of this study was to determine cardiac transcriptional pathways regulated in response to 1.) hypothyroidism and re-establishment of a euthyroid state and 2.) Med13-dependent cardiac transcriptional pathways regulated in response to hypothyroidism and re-establishment of a euthyroid state Overall design: Methods: WT and Med13 cardiac-specific knockout mice (Med13cKO) were put on a normal chow or PTU diet at 8 weeks of age for a duration of 4 weeks. A third group was put on a PTU diet for 4 weeks followed by 3 daily injections of T3.
Regulation of cardiac transcription by thyroid hormone and Med13.
No sample metadata fields
View Samples