refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 10 results
Sort by

Filters

Technology

Platform

accession-icon GSE12644
Gene expression profile of normal and calcified stenotic human aortic valves
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We explored gene expression profile of human aortic valves in patients with or without aortic stenosis. The dataset that we generated constitutes a large-scale quantitative measurements of gene expression in normal and stenotic human valves. The goal was to compare gene expression levels between the two groups and identified a list of genes that are up- or down-regulated in aortic stenosis.

Publication Title

Refining molecular pathways leading to calcific aortic valve stenosis by studying gene expression profile of normal and calcified stenotic human aortic valves.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE61614
Identification of Lhx5 binding sites and Gene expression data from Lhx5 mutant mouse embryos
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Lhx5 controls mamillary differentiation in the developing hypothalamus of the mouse.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE61612
Gene expression data from Lhx5 mutant mouse embryos
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Lhx5 mutant mouse embryos show loss of a neuronal nucleus of the brain called the mamillary body and essential for the formation of memories. We wanted to identify the genes that are responsible for the normal development of the mammillary body.

Publication Title

Lhx5 controls mamillary differentiation in the developing hypothalamus of the mouse.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-1414
Transcription profiling of hepatocyes from Zucker fa/fa obese rats vs controls
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

Analysis of the gene signature of steatosis associated to obesity in hepatocytes of Zucker fa/fa obese rats and their controls; identifying target genes linked to steatosis progression. or Obesity and insulin resistance-associated steatosis can be a non-inflammatory condition affecting hepatocytes or progress to steatohepatitis: a condition that can result in end-stage liver disease. Although molecular events leading to accumulation of lipid droplets in the liver have been identified individually, the complexity of the condition suggested that emergent target would be uncovered by a more comprehensive examination. Then, this study was aimed at establishing a gene signature of steatosis in hepatocytes and at identifying target genes linked to steatosis progression. Using Affymetrix oligonucleotide arrays, we compared transcriptomes of hepatocytes isolated from Zucker "fa/fa" obese rats with three different age-related grades of steatosis with those of their counterpart non-steatotic cells.

Publication Title

A subset of dysregulated metabolic and survival genes is associated with severity of hepatic steatosis in obese Zucker rats.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE48275
Gene expression from human fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Since the initial discovery that OCT4, SOX2, KLF4 and c-MYC overexpression sufficed for the induction of pluripotency in somatic cells, methodologies replacing the original factors have enhanced our understanding of the reprogramming process. However, unlike in mouse, OCT4 has not been replaced successfully during reprogramming of human cells. Here we report on a strategy to do so. Through a combination of transcriptome and bioinformatic analysis we have identified factors previously characterized as being lineage specifiers that are able to replace OCT4 and SOX2 in the reprogramming of human fibroblasts. Our results show that is possible to replace OCT4 and SOX2 simultaneously with alternative lineage specifiers in the reprogramming of human cells. At a broader level, they also support a model in which counteracting lineage specification networks underlie the induction of pluripotency,

Publication Title

Reprogramming of human fibroblasts to pluripotency with lineage specifiers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26627
MOLECULAR CHARACTERIZATION OF LIVER ALLOGRAFTS FROM OPERATIONALLY TOLERANT TRANSPLANT RECIPIENTS
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Intra-graft expression of genes involved in iron homeostasis predicts the development of operational tolerance in human liver transplantation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE28842
Withdrawal of immunosuppressive therapy in stable liver transplant recipients
  • organism-icon Homo sapiens
  • sample-icon 70 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Complications due to long-term administration of immunosuppressive therapy increase the morbidity and mortality of liver transplant recipients. Discontinuation of immunosuppressive drugs in recipients spontaneously developing operational tolerance could substantially lessen this burden. However, this strategy results in the development of rejection in a high proportion of recipients who require lifelong immunosuppression. Thus, there is a need to identify predictive factors of successful drug withdrawal and to define the clinical and histological outcomes of operationally tolerant liver recipients. Methods. We enrolled 102 stable liver transplant recipients in an immunosuppression withdrawal trial in which drugs were gradually discontinued over a 6-9 month period. Patients with stable graft function and no signs of rejection in a liver biopsy conducted 12 months after cessation of immunosuppressive therapy were considered operationally tolerant. Results. Out of the 98 recipients who completed the study, immunosuppression discontinuation was successful in 41 recipients and rejection occurred in 57. Rejection episodes were mild and were resolved in all cases. Development of tolerance was independently associated with time elapsed since transplantation, recipient age, and male gender. No histological damage was apparent in protocol biopsies performed after successful drug withdrawal.

Publication Title

Intra-graft expression of genes involved in iron homeostasis predicts the development of operational tolerance in human liver transplantation.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE26622
MOLECULAR CHARACTERIZATION OF LIVER ALLOGRAFTS FROM OPERATIONALLY TOLERANT TRANSPLANT RECIPIENTS (Affymetrix)
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In clinical organ transplantation complete cessation of immunosuppressive therapy can be successfully accomplished in selected recipients providing a proof-of-principle that allograft tolerance is attainable in humans. The intra-graft molecular pathways associated with human allograft tolerance, however, have not been comprehensively studied before. In this study we analyzed sequential liver tissue samples collected from liver recipients enrolled in a prospective multicenter immunosuppressive withdrawal clinical trial. Tolerant and non-tolerant recipients differed in the intra-graft expression of genes involved in the regulation of iron homeostasis.These results point to a critical role of iron homeostasis in the regulation of intra-graft alloimmune responses in humans and provide a set of novel biomarkers to conduct drug-weaning trials in liver transplantation.

Publication Title

Intra-graft expression of genes involved in iron homeostasis predicts the development of operational tolerance in human liver transplantation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP194241
Single cell analysis of human fetal liver captures the transcriptional profile of hepatobiliary hybrid progenitors
  • organism-icon Homo sapiens
  • sample-icon 492 Downloadable Samples
  • Technology Badge Icon

Description

The liver parenchyma is composed of hepatocytes and bile duct epithelial cells (BECs). Controversy exists regarding the cellular origin of human liver parenchymal tissue generation during embryonic development, homeostasis or repair. Here we report the existence of a hepatobiliary hybrid progenitor (HHyP) population in human fetal liver using single-cell RNA sequencing. HHyPs are anatomically restricted to the ductal plate of fetal liver and maintain a unique transcriptional profile distinct from fetal hepatocytes, mature hepatocytes and mature BECs. In addition, molecular heterogenicity within the EpCAM+ population of freshly isolated fetal and adult human liver reveals diverse gene expression signatures of hepatic and biliary lineage potential. Finally, we FACS isolated fetal HHyPs and confirmed their hybrid progenitor phenotype in vivo. Our study suggests that hepatobiliary progenitor cells previously identified in mice also exist in humans, and can be distinguished from other parenchymal populations, including mature BECs, by distinct gene expression profiles. Overall design: Primary samples from 5 2nd trimester human fetal livers and 3 uninjured adult human livers for single cell RNA sequencing by Smartseq2.

Publication Title

Single cell analysis of human foetal liver captures the transcriptional profile of hepatobiliary hybrid progenitors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE103902
Master retinal transcription factors define a subgroup-specific photoreceptor program and implicate novel dependencies in medulloblastoma
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

We used microarrays to compare gene expression between shRNA targeting NRL and control replicates in D458Med cell line.

Publication Title

NRL and CRX Define Photoreceptor Identity and Reveal Subgroup-Specific Dependencies in Medulloblastoma.

Sample Metadata Fields

Cell line

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact