Mycobacterium abscessus is an emerging pathogen causing pulmonary infections in those with inflammatory lung disorders, such as Cystic Fibrosis (CF), and is associated with the highest fatality rate among rapidly growing mycobacteria (RGM). Phenotypically, MAB manifests as either a Smooth (MAB-S) or a Rough (MAB-R) morphotype, which differ in their levels of cell wall glycopeptidolipids (GPLs) and in their pathogenicity in vivo. As one of the primary immune cells encountered by MAB, we sought to examine the early transcriptional events within macrophages, following infection with both MAB-S or MAB-R. We sampled the small RNA (sRNA) transcriptome of THP-1-derived macrophages infected with both MAB-R and MAB-S at 1, 4 and 24 hours post-infection (hpi) using RNA-seq. MAB-S elicited a more robust transcriptional response at the miRNA level, reflecting higher cytokine levels in culture supernatants. However, and a direct comparison identified no differentially expressed miRNAs between MAB-R- and MAB-S-infected cells. Most of the induced miRNAs have previously been associated with mycobacterial infection and overall miRNA expression patterns were similarly highly correlated between the morphotypes. Overall design: THP-1-derived macrophages were infected in parallel with the MAB-R and MAB-S morphotypes. Poly-A selected RNAs were purified and sequenced at 1, 4 and 24 hours post-infection, and compared with uninfected controls.
High-throughput transcriptomics reveals common and strain-specific responses of human macrophages to infection with Mycobacterium abscessus Smooth and Rough variants.
No sample metadata fields
View SamplesThe regulation of endometrial inflammation has important consequences for the resumption of bovine fertility post-partum. All cows experience bacterial influx into the uterus after calving; however a significant proportion fail to clear infection leading to the development of cytological endometritis (CE) and compromised fertility. We hypothesised that early immunological changes could not only act as potential prognostic biomarkers for the subsequent development of disease but also shed light on the pathogenesis of endometritis in the post-partum dairy cow. Here, next-generation sequencing from endometrial biopsies taken at 7 days post-partum (DPP) identified significant expression of inflammatory genes in all cows. Despite the common inflammatory profile and enrichment of the Toll-like receptor, NF?B and TNF signalling pathways, 73 genes and 31 miRNAs differentiated between healthy cows (HC, n=9) and cows which subsequently developed CE at 7 DPP (n=6, FDR<0.1). In healthy cows, 4197 differentially expressed genes between 7 and 21 DPP whereas only 31 genes were differentially expressed in samples from cows with CE. At 21 DPP, a further 1167 genes were differentially expressed between HC cows and cows diagnosed with CE (FDR<0.1). These changes in host gene expression reflected culture-independent microbiological analysis which showed significant differences in uterine bacterial profiles between groups. Inflammatory activity was not confined to the uterus; decreased circulating granulocytes and increased Acute Phase Protein (SAA and HP) plasma expression levels were detected at 7 DPP in cows that developed CE. In conclusion, our data suggests that the major inflammatory cascade activated early post-partum is resolved thereby restoring homeostasis in healthy cows by 21 DPP, but this transition fails to occur in cows which develop CE. Despite a common inflammatory profile, differential expression of specific immune genes may identify cows at risk of prolonged inflammation and the development of CE post-partum. Overall design: Sixteen Holstein Friesian cows, of mixed parity, within the same university dairy herd were sampled 7 and 21 days postpartum (DPP) in the morning after milking, over an eight week period.
Integrated analysis of the local and systemic changes preceding the development of post-partum cytological endometritis.
Specimen part, Subject, Time
View SamplesTo try to identify the mechanism of STAT3s indirect action we have used a genomic approach to map the binding sites of STAT3 within the genome and also used RNA-seq technology to map the changes in RNA expression and transcript isoform abundance in response to IL-10. Overall design: Examination of transcriptome changes in peritoneal macrophages when treated with IL-10 for 4 hours. RNA was extracted and sequenced.
Genome-wide analysis of STAT3 binding in vivo predicts effectors of the anti-inflammatory response in macrophages.
Sex, Specimen part, Cell line, Subject
View SamplesRNA-seq was used to look at the transcriptome changes and the early events of T cell receptor stimulation in CD4+ T cells Overall design: CD4+ T cells were stimulated with immobilised anti-CD3/CD28 antibodies for 4 hours and RNA was extracted and subjected to RNA-seq analysis.
Discovery and characterization of new transcripts from RNA-seq data in mouse CD4(+) T cells.
Sex, Specimen part, Cell line, Treatment, Subject
View SamplesThe Caenorhabditis elegans oxidative stress response transcription factor, SKN-1, is essential for the maintenance of redox homeostasis and is a functional ortholog of the Nrf family of transcription factors. The numerous levels of regulation that govern these transcription factors underscore their importance. Here, we add a thioredoxin, encoded by trx-1, to the expansive list of SKN-1 regulators. We report that loss of trx-1 promotes nuclear localization of intestinal SKN-1 in a redox-independent, cell non-autonomous fashion from the ASJ neurons. Furthermore, this regulation is not general to the thioredoxin family, as two other C. elegans thioredoxins TRX-2 and TRX-3 do not play a role in this process. Moreover, TRX-1-dependent regulation requires signaling from the p38 MAPK signaling pathway. However, while TRX-1 regulates SKN-1 nuclear localization, SKN-1 transcriptional activity remains largely unaffected. Interestingly, RNA-Seq revealed that loss of trx-1 elicits a general, organism-wide down-regulation of several classes of genes; those encoding for collagens and lipid transport and localization being most prevalent. However, one prominent lipase-related gene, lips-6, is highly up regulated upon loss of trx-1 in a skn-1-dependent manner. Together, these results uncover a novel role for a thioredoxin in regulating intestinal SKN-1 nuclear localization in a cell non-autonomous manner, thereby contributing to the understanding of the processes involved in maintaining redox homeostasis throughout an organism. Overall design: Four samples were analyzed: Two nematode strains were analyzed, each under non-stressed and stressed (10mM NaAs) conditions
TRX-1 Regulates SKN-1 Nuclear Localization Cell Non-autonomously in Caenorhabditis elegans.
Disease, Cell line, Subject
View SamplesThe aim of this study was to identify differences in the NK-cell response towards Leishmania mexicana lipophosphoglycan (LPG) between patients with localized (LCL) and diffuse (DCL) cutaneous leishmaniasis through gene expression profiling, in an attempt to pinpoint alterations in the signaling pathways responsible for the NK-cell dysfunction in patients with DCL.
Down-Regulation of TLR and JAK/STAT Pathway Genes Is Associated with Diffuse Cutaneous Leishmaniasis: A Gene Expression Analysis in NK Cells from Patients Infected with Leishmania mexicana.
Specimen part, Disease, Disease stage, Treatment
View SamplesPurpose: Müller glia are the only glial cell type produced by the neuroepithelial progenitor cells which generate the vertebrate retina. Müller glia are required to maintain retinal homeostasis and support the survival of retinal neurons. Furthermore, they function as an adult stem cell, mediating retinal regeneration among select vertebrate classes. However, the mechanisms which regulate Müller development are poorly understood as considerable overlap exists in gene expression between retinal progenitor cells and differentiated Müller glia. We investigate the functional role of the LIM homeodomain transcription factor Lhx2 in the specification and development of Müller glia in the mouse. Methods: RNA-Seq was performed in collaboration with the Johns Hopkins School of Medicine Deep Sequencing and Microarray Core Facility. Libraries were prepared using Illumina TruSeq RNA Sample kit (Illumina, San Diego, CA) following manufacturer’s recommended procedure. The PCR amplified library was purified using RNAClean XP magnetic beads (Agencourt, Beverley, MA) and run out on a High Sensitivity DNA Chip (Agilent, Santa Clara, CA) for quality check. We used STAR to align RNA-Seq reads onto Ensembl mouse genome GRCm38, release 72. To generate the stand attribute for alignments containing splice junctions, we used the outSAMstrandField intronMotif program. The spliced alignments without strand definition were removed. Number of reads mapped to exons was counted by htseq-count. Genes expressed at very low levels were omitted from further analysis. Gene expression differences between wildtype and mutant samples, significance (p-value) and false discovery rate (FDR) were computed using the generalized linear models based EdgeR. Results: We observed a substantial reduction in expression of Notch pathway genes including Notch1, the Notch ligands Dll1 and Dll3, as well as gliogenic Notch effector genes such as Hes1, Hes5, Id1 and Sox8 and the Müller-gliogenic factor Rax. We likewise observe a substantial reduction in expression of progenitor-specific genes such as Vsx2 and Fgf15. Furthermore, we observed a decrease in the expression of early-onset glial markers such as Crym , Spon1, and Car2. Overall design: Retinal mRNA profiles of post-natal day 0.5 (P0.5) Lhx2 wild type (N=3) and Lhx2lox/lox; Pdgfra-Cre ?cKO (N=3) mice were generated using Illumina TruSeq and analyzed with Agilent high sensitivity DNA analsis kit.
Lhx2 Is an Essential Factor for Retinal Gliogenesis and Notch Signaling.
Specimen part, Cell line, Subject
View SamplesTranscriptome analysis of a population of control animals vs cisplatin-treated, in duplicate Overall design: A mixed population of worms representing all stages and growing under control conditions was exposed to 60 µg/ml of cisplatin for 24 hours at 20ºC. Treated and control samples weer collected in biological replicates.
Genetic and cellular sensitivity of <i>Caenorhabditis elegans</i> to the chemotherapeutic agent cisplatin.
Cell line, Treatment, Subject
View SamplesThe hypothalamus is a central regulator of many behaviors essential for survival such as temperature regulation, food intake and circadian rhythms. However, the molecular pathways that mediate hypothalamic development are largely unknown. To identify genes expressed in developing mouse hypothalamus, microarray analysis at 12 different developmental time points was performed. Developmental in situ hybridization was conducted for 1,045 genes dynamically expressed by microarray analysis. In this way, we identified markers that stably labeled each major hypothalamic nucleus over the entire course of neurogenesis, and thus constructed a detailed molecular atlas of the developing hypothalamus. As proof of concept for the utility of this data, we used these markers to analyze the phenotype of mice where Sonic Hedgehog (Shh) was selectively deleted from hypothalamic neuroepithelium, demonstrating an essential role for Shh in anterior hypothalamic patterning. Our results serve as a resource for functional investigations of hypothalamic development, connectivity, physiology, and dysfunction.
A genomic atlas of mouse hypothalamic development.
Sex, Specimen part
View SamplesDNA methylation, histone modifications, and nucleosomal occupancy collaborate to cause silencing of tumor related genes in cancer. The development of drugs that target these processes is therefore important for cancer therapy. Inhibitors of DNA methylation and histone deacetylation have already been approved by the FDA for the treatment of hematologic malignancies. However, drugs that target the other mechanisms still need to be developed. Recently, 3-deazaneplanocin A (DZNep) was reported to selectively inhibit the trimethylation of lysine 27 on histone H3 (H3K27me3) and lysine 20 on histone H4 (H4K20me3) as well as re-activate silenced genes in cancer cells. This finding opens the door to pharmacological inhibition of histone methylation and we therefore wanted to further study the mechanism of action of 3-deazaneplanocin A in cancer cells. Western blot analysis showed that two other drugs, sinefungin and adenosine-dialdehyde (Adox), have similar effects on the trimethylation H3K27 as 3-deazaneplanocin A and that DZNep is not selective, but globally inhibits histone methylation. Intriguingly, chromatin immunoprecipitation of various histone modifications and microarray analysis show DZNep acts via a different pathway to 5-aza-2-deoxycytidine (5-azaCdR), a DNA methyltransferase inhibitor and gives us an interesting insight into how chromatin structure effects gene expression. We also determine the kinetics of gene activation in order to understand if the induced changes were somatically heritable. We have found that upon removal of DZNep, gene expression is reduced to its original state suggesting that there is a homeostatic mechanism which returns the histone modifications to their ground state after DZNep treatment. Not only do these studies show the strong need for further development of histone methylation inhibitors but also allow us to better understand how chromatin structure affects gene expression.
DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation.
No sample metadata fields
View Samples