refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 118 results
Sort by

Filters

Technology

Platform

accession-icon GSE52707
Nuclear factor kappa B activation-induced anti-apoptosis renders HER2 positive cells drug resistant and accelerates tumor growth
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Breast cancers with HER2 overexpression are sensitive to drugs targeting the receptor or its kinase activity. HER2-targeting drugs are initially effective against HER2- positive breast cancer, but resistance inevitably occurs. We previously found that nuclear factor kappa B is hyper-activated in the subset of HER-2 positive breast cancer cells and tissue specimens. In this study, we report that constitutively active NF-B rendered HER2-positive cancer cells resistant to anti-HER2 drugs, and cells selected for Lapatinib resistance up-regulated NF-B. In both circumstances, cells were anti-apoptotic and grew rapidly as xenografts. Lapatinib-resistant cells were refractory to HER2 and NF-B inhibitors alone but were sensitive to their combination, suggesting a novel therapeutic strategy. A subset of NF-B-responsive genes was overexpressed in HER2-positive and triple-negative breast cancers, and patients with this NF-B signature had poor clinical outcome. Anti-HER2 drug resistance may be a consequence of NF-B activation, and selection for resistance results in NF-B activation, suggesting this transcription factor is central to oncogenesis and drug resistance. Clinically, the combined targeting of HER2 and NF-B suggests a potential treatment paradigm for patients who relapse after anti-HER2 therapy. Patients with these cancers may be treated by simultaneously suppressing HER2 signaling and NF-B activation.

Publication Title

NF-κB activation-induced anti-apoptosis renders HER2-positive cells drug resistant and accelerates tumor growth.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-750
Transcription profiling of human CD4 T cell subsets isolated from peripheral blood and palatine tonsils
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133B Array (hgu133b), Affymetrix Human Genome U133A Array (hgu133a)

Description

Comparatative gene expression analysis for CD4 T cell subsets isolated from peripheral blood and palatine tonsils

Publication Title

A methodology for global validation of microarray experiments.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-774
Transcription profiling by array of mouse preadipocytes after treatment with dexamethasone
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

DNA microarrays are popular tools for measuring gene expression of biological samples. This ever increasing popularity is ensuring that a large number of microarray studies are conducted, many of which with data publicly available for mining by other investigators. Under most circumstances, validation of differential expression of genes is performed on a gene to gene basis. Thus, it is not possible to generalize validation results to the remaining majority of non-validated genes or to evaluate the overall quality of these studies. <br></br> We have devised an approach for the global validation of DNA microarray experiments that will allow researchers to evaluate the general quality of their experiment and to extrapolate validation results of a subset of genes to the remaining non-validated genes. We applied this method to a microarray experiment validated with quantitative real time polymerase chain reaction. The experiment consists of three biological replicate treatments of mouse 3T3-L1 preadipocytes with the steroid hormone dexamethasone for 3 hours. Total RNA was extracted from each of our three treatment and three control samples, and we labeled and hybridized five aliquots of each sample to Affymetrix MGU74Av2 microarrays, for a total of 30 microarrays.<br></br> We illustrate why the popular strategy of selecting only the most differentially expressed genes for validation generally fails as a global validation strategy and propose random-stratified sampling as a better gene selection method. We also illustrate shortcomings of often-used validation indices such as overlap of significant effects and the correlation coefficient and recommend the concordance correlation coefficient (CCC) as an alternative.

Publication Title

A methodology for global validation of microarray experiments.

Sample Metadata Fields

Cell line, Subject, Compound

View Samples
accession-icon GSE73608
Transcriptional response to interferon beta-1a treatment in patients with secondary progressive multiple sclerosis
  • organism-icon Homo sapiens
  • sample-icon 81 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Interferon (IFN) beta-1a is an approved treatment for relapsing remitting multiple sclerosis (RRMS) and has been examined for use in secondary progressive multiple sclerosis (SPMS). However, no information regarding blood transcriptional changes induced by IFN treatment in SPMS patients is available.

Publication Title

Transcriptional response to interferon beta-1a treatment in patients with secondary progressive multiple sclerosis.

Sample Metadata Fields

Sex, Age, Treatment

View Samples
accession-icon SRP032542
Whole RNA-seq on clones of GM12878 lymphoblastoid clones DF1 and DF2
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Analysis of Allelic bias in clonal lymphoblastoid cells. Abstract: In mammals, numerous autosomal genes are subject to mitotically stable monoallelic expression (MAE), including genes that play critical roles in a variety of human diseases. Due to challenges posed by the clonal nature of MAE, very little is known about its regulation; in particular, no molecular features have been specifically linked to MAE. Here we report an approach that distinguishes MAE genes in human cells with great accuracy: a chromatin signature consisting of chromatin marks associated with active transcription (H3K36me3) and silencing (H3K27me3) simultaneously occurring in the gene body. The MAE signature is present in ~20% of ubiquitously expressed genes and over 30% of tissue-specific genes across cell types. Notably, it is enriched among key developmental genes that have bivalent chromatin structure in pluripotent cells. Our results open a new approach to the study of MAE that is independent of polymorphisms, and suggest that MAE is linked to cell differentiation. Overall design: Poly A purified total RNA was used for library construction using a method described by Parkhomchuk et. al. NAR 2009. The library was strand-specific but the pipeline for data analysis does not assume the library is strand-specific.

Publication Title

Chromatin signature of widespread monoallelic expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7904
Expression data from human breast tissue
  • organism-icon Homo sapiens
  • sample-icon 62 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

bulk breast tumor RNA from patient

Publication Title

X chromosomal abnormalities in basal-like human breast cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3744
Human breast tumor expression
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression for 47 human breast tumor cases;

Publication Title

X chromosomal abnormalities in basal-like human breast cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13671
Expression data from mammary epithelial cells from BRCA1 mutation carriers and non BRCA1 mutation carriers
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Female BRCA1 mutation carriers have a nearly 80% probability of developing breast cancer during their life-time. We hypothesized that the breast epithelium at risk in BRCA1 mutation carriers harbors mammary epithelial cells (MECs) with altered proliferation and differentiation properties.

Publication Title

Altered proliferation and differentiation properties of primary mammary epithelial cells from BRCA1 mutation carriers.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36096
Gene expression profiling in BCR-ABL expressing LSCs and BCR-ABL-BLK expressing LSCs
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Using BCR-ABL-induced chronic myeloid leukemia (CML) as a disease model for leukemia stem cells (LSCs), we showed that BCR-ABL down-regulates the B lymphoid kinase (Blk) gene in leukemia stem cells in CML mice and that Blk functions as a tumor suppressor in LSCs and suppresses LSC function. Inhibition of this Blk pathway accelerates CML development, whereas increased activity of the Blk pathway delays CML development. To identify the pathways in which Blk regulates function of LSCs, we performed a comparative DNA microarray analysis using total RNA isolated from non-BCR-ABL-expressing Lin-Sca-1+c-Kit+, BCR-ABL- and BCR-ABL-Blk expressing LSCs. This analysis revealed a large group of candidate genes that exhibited changes in the levels of transcription in the Blk expressing LSCs, and uncovered the molecular mechanisms by which Blk suppresses LSCs and CML development.

Publication Title

The Blk pathway functions as a tumor suppressor in chronic myeloid leukemia stem cells.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE20044
High resolution NO3 response of Arabidopsis Roots
  • organism-icon Arabidopsis thaliana
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This work uses a time series in order to decipher gene relationships and consequently to build core regulatory networks involved in Arabidopsis root adaptation to NO3- provision. The experimental approach has been to monitor genome response to NO3- at 3, 6, 9, 12, 15 and 20 min, using ATH1 chips. This high-resolution time course analysis demonstrated that the previously known primary nitrate response is actually preceded by very fast (within 3 min) gene expression modulation, involving genes/functions needed to prepare plants to use/reduce NO3-. State-space modeling (a machine learning approach) has been used to successfully predict gene behavior in unlearnt conditions.

Publication Title

Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact