Gene expression profiles 6 hours post-influenza A virus infection in human monocytes at multiplicities of infection of 10 versus uninfected monocytes
Viral infection triggers rapid differentiation of human blood monocytes into dendritic cells.
Specimen part
View SamplesAccurate and reproducible quantitation of target genes depends on correct normalization. Historically, genes with variable tissue transcription e.g. GAPDH, have been used as normalization factors which is problematic, particularly in clinical samples which often are derived from different tissue sources. Using a large-scale gene database (GeneChip (Affymetrix U133A) dataset of 36 gastrointestinal tumors and normal tissues), we identified 8 candidate reference genes that were highly expressed with low variability and established expression levels by real-time RT-PCR in an independent set of GI tissue samples (n=42).
GeneChip, geNorm, and gastrointestinal tumors: novel reference genes for real-time PCR.
No sample metadata fields
View SamplesIntegration of multiple signals shapes cell adaptation to their microenvironment through synergistic and antagonistic interactions. The combinatorial complexity governing signal integration for multiple cellular output responses has not been resolved. For outputs measured in the conditions 0 (control), signals X, Y, X+Y, combinatorial analysis revealed 82 possible interaction profiles, which we biologically assimilated to 5 positive, and 5 negative interaction modes. To experimentally validate their use in living cells, we designed an original computational workflow, and applied it to transcriptomics data of innate immune cells integrating physiopathological signal combinations. Up to 9 of the 10 defined modes coexisted in context-dependent proportions. Each integration mode was enriched in specific molecular pathways, suggesting a coupling between genes involved in particular functions, and the corresponding mode of integration. We propose that multimodality and functional coupling are general principles underlying the systems level integration of physiopathological and pharmacological stimuli by mammalian cells.
Combinatorial code governing cellular responses to complex stimuli.
Time
View SamplesNeutrophil recruitment is pivotal to host defense against microbial infection, but also contributes to the immunopathology of disease. We investigated the mechanism of neutrophil recruitment in human infectious disease by bioinformatic pathways analysis of the gene expression profiles in the skin lesions of leprosy. In erythema nodosum leprosum (ENL), which occurs in patients with lepromatous leprosy (L-lep), and is characterized by neutrophil infiltration in lesions, the most overrepresented biologic functional group was 'cell movement' including E-selectin, which was coordinately regulated with IL-1beta. In vitro activation of TLR2, upregulated in ENL lesions, triggered induction of IL-1beta, which together with IFN-gamma, induced E-selectin expression on, and neutrophil adhesion to endothelial cells. Thalidomide, an effective treatment for ENL, inhibited this neutrophil recruitment pathway. The gene expression profile of ENL lesions comprised an integrated pathway of TLR2/FcR activation, neutrophil migration and inflammation, providing insight into mechanisms of neutrophil recruitment in human infectious disease.
Integrated pathways for neutrophil recruitment and inflammation in leprosy.
Specimen part
View SamplesSuccessful host defense against pathogens requires innate immune recognition of the correct pathogen associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs) to trigger the appropriate gene program tailored to the pathogen. While many PRR pathways have been shown to contribute to the innate immune response to specific pathogens, the relative importance of each pathway for the complete transcriptional program elicited has not been examined in detail. Herein, we used RNA-sequencing with wildtype and mutant macrophages to delineate the innate immune pathways responsible for the early transcriptional response to Staphylococcus aureus, a ubiquitous microorganism that can activate a wide variety of PRRs. Unexpectedly, only two PRR pathways – the Toll-like receptor (TLR) and Stimulator of Interferon Gene (STING) pathways - were identified as dominant regulators of approximately 95% of the genes that were potently induced within the first four hours of macrophage infection with live S. aureus. TLR signaling predominantly activated an inflammatory program, STING signaling activated an antiviral/type I interferon response, and both pathways contributed to a program linking innate and adaptive immunity. Only a small number of genes were induced in the absence of TLR or STING signaling, and these genes possessed a strong hypoxia signature. STING pathway activation required live S. aureus and was largely dependent on the DNA sensor cyclic guanosine-adenosine synthase (cGAS) recognition of S. aureus DNA. Interestingly, using a cutaneous infection model, we found that the TLR and STING pathways played opposite roles in host defense to S. aureus, with TLR signaling being required for protective interleukin (IL)-1? and neutrophil recruitment and STING signaling having an opposite effect. These results provide novel insights into the complex interplay of innate immune signaling pathways triggered byS. aureus and uncover opposing roles of TLR and STING in cutaneous host defense to S. aureus. Overall design: Files are labeled according to the figures in which they were used. Note, that many data files were used in multiple figures or figure panels. Files are labeled by genotype of macrophages (WT=wildtype; KO= StingGt/Gt; DKO=MyD88-/-TRIF-/-) and whether the macrophages were treated with live (Live) or heat killed (HK) or uninfected (zero hour). Labeling of time points is in the order of "minutes_replicate #." For example, "WT_HK_30_2" indicates that this is wild type mouse macrophages stimulated with heat killed bacteria at the 30-minute time point and is replicate number 2. Reads were converted into RPKM, and the RPKM for all replicates listed for a given time point were averaged to obtain the average RPKM that was used for figures and analyses. For samples listed as contributing to either figure 3 or supplemental figure 2, the replicates that do NOT end in either KO_analysis nor DKO analysis were used to determine induced genes in wild type macrophages. In contrast, the replicates that end in KO_analysis or DKO_analysis were used to determine dependence on either STING signaling or MyD88/TRIF signaling, respectively. If a replicate was used in the STING or MyD88/TRIF dependence analysis for both live and heat-killed S. aureus, "live_and_hk" was added after the dependence analysis it contributed to. Some 0h samples were used in both live and heat-killed analyses.
Opposing roles of Toll-like receptor and cytosolic DNA-STING signaling pathways for Staphylococcus aureus cutaneous host defense.
Sex, Specimen part, Cell line, Subject
View Sampleshuman blood monocytes were isolated, activated and harvested at several timepoints
NOD2 triggers an interleukin-32-dependent human dendritic cell program in leprosy.
Specimen part
View SamplesComparison of Mpl-/- mouse LSK cells, either treated with control (GFP) or Mpl lentivirus. Lineage negative bone marrow cells were isolated and transduced and transplanted into Mpl-/- recipient mice. After transplantation and follow up mice were sacrificed and LSK (lineage negative, Sca-1 positive, cKit positive) cells were isolated by FACS. RNA was isolated using RNeasy Micro Kit (Qiagen GmbH, Hilden, Germany) and RNA was amplified for microarray hybridization using the Nugen Ovation system (Nugen Technologies, AC Bemmel, Netherlands). The resulting material was hybridized to Affymetrix Mouse 430 2.0 arrays. RMA normalization and summarization was performed in R 2.10 using Bioconductor packages. The aim was to show the normalization of Mpl associated gene expression.
Lentiviral gene transfer regenerates hematopoietic stem cells in a mouse model for Mpl-deficient aplastic anemia.
Specimen part
View SamplesTranscriptome profiles for innate and adaptive immune stimuli important for host response against mycobacteria. Human monocyte-derived macrophages were stimulated with TLR2/1 ligand and interferon-g, stimuli present during innate and adaptive immune responses, respectively. Overall design: Human monocyte-dervided macrophages from five healthy donors were stimulated with TLR2/1L, IFN-g, or media control for 2, 6, and 24 hours. RNA-sequencing was performed on a total of 45 samples.
S100A12 Is Part of the Antimicrobial Network against Mycobacterium leprae in Human Macrophages.
Specimen part, Subject
View SamplesMouse LT-HSC were sorted and cultured in mScf, mTpo, mFlt3L, hIGFBP2 and Angptl5 for 2 days. These expression values were related to insertions of gamma-retroviral, lentiviral or alpharetroviral vectors carrying GFP which were retrieved after serial murine BM transplantation. The relation between gene expression in the cells responsible for long-term hematopoiesis and location of vector integration was investigated.
Alpharetroviral self-inactivating vectors: long-term transgene expression in murine hematopoietic cells and low genotoxicity.
Specimen part
View SamplesTuberculosis remains a major cause of death from an infectious disease worldwide, yet only 10% of people infected with Mycobacterium tuberculosis develop disease. Defining both necessary and sufficient immunologic determinants of protection remains a great scientific challenge. Analysis of peripheral blood gene expression profiles of active tuberculosis patients has identified correlates of risk for disease or pathogenesis. We sought to identify human potential candidate markers of host defense by studying gene expression profiles of macrophages, cells which, upon infection by M. tuberculosis, can mount an antimicrobial response. Weighted gene co-expression network analysis revealed an association between the cytokine, IL-32, and the vitamin D antimicrobial pathway in a network of IFN- and IL-15 induced defense response genes. IL-32 was sufficient for induction of the vitamin D-dependent antimicrobial peptides, cathelicidin and DEFB4, and generation of antimicrobial activity in vitro, dependent on the presence of adequate 25-hydroxyvitamin D. The IL-15 induced defense response macrophage gene network was integrated with ranked pairwise comparisons of gene expression from five different clinical data sets of latent vs. active tuberculosis or healthy controls, and a co-expression network derived from gene expression in patients with tuberculosis undergoing chemotherapy. Together, these analyses identified eight common genes, including IL-32, as molecular markers of latent tuberculosis and the IL-15 induced gene network. Inferring that maintaining M. tuberculosis in a latent state and preventing transition to active disease represents host resistance, we believe these results identify IL-32 as one functional marker and potential correlate of protection against active tuberculosis.
IL-32 is a molecular marker of a host defense network in human tuberculosis.
Specimen part, Subject
View Samples