Neutrophils represent a fundamental mechanism of antimicrobial resistance and inflammation 1. Moreover, neutrophils have emerged as important players in the activation, orchestration and regulation of adaptive immune responses2,3. Neutrophils are a component of the tumor microenvironment (TME) and have been prevalently shown to promote progression 4-6. On the other hand, unleashed neutrophilic effectors have also been reported to mediate anti-cancer resistance7-11. Antibody-mediated depletion used to investigate the role of neutrophils in tumor progression suffers from limitations, including duration, specificity and perturbation of the system12. We therefore used a genetic approach to investigate the role of neutrophils in primary 3-methylcholanthrene (3-MCA)-induced sarcomagenesis. Neutrophils were found to play an essential role in resistance against primary carcinogenesis by driving an interferon-? dependent type 1 immune response. Neutrophil-dependent macrophage production of IL-12p70 led to type 1 polarization of CD4- CD8- unconventional aß T cells (UTCaß) in the TME. Single cell RNAseq analysis and in vivo evidence from two preclinical sarcoma models highlight the antitumor potential of a UTCaß subset. In the TCGA cohort of human undifferentiated pleomorphic sarcomas (UPS), unlike other sarcomas, granulocyte-colony stimulating factor receptor (CSF3R) expression and a neutrophil signature were associated with better outcome and with a type 1 immune response. The positive association between high neutrophil infiltration and improved clinical outcome was confirmed in an independent UPS cohort by immunohistochemistry. Thus, neutrophils, by driving a type 1 immune response and polarization of UTCaß, mediate resistance against murine and human sarcomas. Overall design: two experimental conditions, two biological replicates for each condition
Neutrophils Driving Unconventional T Cells Mediate Resistance against Murine Sarcomas and Selected Human Tumors.
Specimen part, Subject
View SamplesThere is differential expression of genes between cases and controls using microarray analysis, and genes that are crucial for host defence responses are significantly up-regulated in cases during pneumococcal infection.
Peripheral blood RNA gene expression in children with pneumococcal meningitis: a prospective case-control study.
Specimen part, Disease, Disease stage
View SamplesMutations in the CLN3 gene lead to juvenile neuronal ceroid lipofuscinosis, a pediatric neurodegenerative disorder characterized by visual loss, epilepsy and psychomotor deterioration. Although most CLN3 patients carry the same 1 kb deletion in the CLN3 gene, their disease phenotype can be variable. The aims of this study were (1) to identify genes that are dysregulated in CLN3 disease regardless of the clinical course that could be useful as biomarkers, and (2) to find modifier genes that affect the progression rate of the disease.
Analysis of potential biomarkers and modifier genes affecting the clinical course of CLN3 disease.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesIn order to identify the gene targets of frequently altered chromosomal regions in retinoblastoma, a meta-analysis of genome-wide copy number alterations studies on primary retinoblastoma tissue and retinoblastoma cell lines was performed. Published studies were complemented by copy number and gene expression analysis on primary and cell line samples of retinoblastoma. This dataset includes the gene expression data of the retinoblastoma cell lines
A Meta-Analysis of Retinoblastoma Copy Numbers Refines the List of Possible Driver Genes Involved in Tumor Progression.
Specimen part, Cell line
View SamplesWe aimed to discover a combination of reliable and functionally important biomarkers of severe bacterial infection (SBI) using transcriptomics, and to evaluate their clinical validity.
Novel biomarker combination improves the diagnosis of serious bacterial infections in Malawian children.
Sex, Specimen part, Disease
View SamplesBackground
Loss of photoreceptorness and gain of genomic alterations in retinoblastoma reveal tumor progression.
Specimen part
View SamplesKRAS mutations are the ost abundand driver mutations found in lung adenocarcinoma patients. Unfortunately, there are no clinical approved inhibitors available, to directly target mutant forms of KRAS. The aim of the study was to unravel the impact of upstream Egfr activation in signaling of mutated K-ras. We found that upregulation of G12D mutant Kras induced genes was significantly impaired when Egfr was knocked out. Our data suggests that signaling of mutant Kras depends on upstream activation. This finding may be exploited therapeutically by targeting EGFR in KRAS mutant patients. Overall design: We isolated mouse alveolar type II cells and induced the Kras G12D mutation, with and without concomitant Egfr knockout, in vitro. Cells lysates were analyzed 5 days following transgene induction.
JAK-STAT inhibition impairs K-RAS-driven lung adenocarcinoma progression.
Specimen part, Cell line, Subject
View SamplesWe profiled the transcriptome of Drosophila melanogaster embryos in ttk2D50 embryos or after over-expression using btl-GAL4; UAS-ttk, respectively. We further isolated cells that express btl-enh-RFPmoe (Cabernard and Affolter 2005) and FACS sorting, and profiled their transcriptomes in the same genetic backgrounds.
Tramtrack is genetically upstream of genes controlling tracheal tube size in Drosophila.
Specimen part
View SamplesCardiac hypertrophy is regulated by the zinc finger-containing DNA binding factors Gata4 and Gata6, both of which are required to mount a productive growth response of the adult heart. To determine if Gata4 and Gata6 are redundant or have non-overlapping roles, we performed cardiomyocyte-specific conditional gene deletions for Gata4 and Gata6 in conjunction with reciprocal replacement with a transgene encoding either Gata4 or Gata6, during the pressure overload response. We determined that Gata4 and Gata6 play a redundant and dosage-sensitive role in programming the hypertrophic growth response itself following pressure overload stimulation. However, non-redundant functions were identified as functional decompensation induced by either Gata4 or Gata6 deletion was not rescued by the reciprocal transgene, and only Gata4 heart-specific deletion produced a reduction in capillary density after pressure overload. Gene expression profiling from hearts of these gene-deleted mice showed both overlapping and unique transcriptional codes, with Gata4 exhibiting the strongest impact. These results indicate that Gata4 and Gata6 play a dosage-dependent and semi-redundant role in programming cardiac hypertrophy, but that each has a unique role in maintaining cardiac homeostasis and adaptation to injury that cannot be compensated by the other.
Parsing the roles of the transcription factors GATA-4 and GATA-6 in the adult cardiac hypertrophic response.
Age, Specimen part
View SamplesIn order to identify targets for HDAC4, NRVM were infected with adenoviral vectors encoding beta-Galactosidase or Flag- HDAC4, and incubated in serum free or 10% fetal calf serum containing growth medium for 48 hrs.
Modulation of chromatin position and gene expression by HDAC4 interaction with nucleoporins.
Specimen part
View Samples