Astrocytes, the most abundant cells in the central nervous system, promote synapse formation and help refine neural connectivity. Although they are allocated to spatially distinct regional domains during development, it is unknown whether region-restricted astrocytes are functionally heterogeneous. Here we show that postnatal spinal cord astrocytes express several region-specific genes, and that ventral astrocyte-encoded Semaphorin3a (Sema3a) is required for proper motor neuron and sensory neuron circuit organization. Loss of astrocyte-encoded Sema3a led to dysregulated motor neuron axon initial segment orientation, markedly abnormal synaptic inputs, and selective death of but not of adjacent motor neurons. Additionally, a subset of TrkA+ sensory afferents projected to ectopic ventral positions. These findings demonstrate that stable maintenance of a positional cue by developing astrocytes influences multiple aspects of sensorimotor circuit formation. More generally, they suggest that regional astrocyte heterogeneity may help to coordinate postnatal neural circuit refinement.
Astrocyte-encoded positional cues maintain sensorimotor circuit integrity.
Specimen part
View SamplesWe compare the transcription profiles of IL-5-reporter marked ILC2s and Th2 cells sorted from mouse lung tissue after Nippostrongylus brasiliensis infection Overall design: mRNA sequencing comparing material from 2 cell populations sorted from the lungs of 7 Red5/Red5 mice, comprising 2 independent infections, 14 days after N.b. infection
A tissue checkpoint regulates type 2 immunity.
No sample metadata fields
View SamplesDevelopmental regulation of gliogenesis in the mammalian CNS is incompletely understood, in part due to a limited repertoire of lineage-specific genes. We used Aldh1l1-GFP as a marker for gliogenic radial glia and later-stage precursors of developing astrocytes and performed gene expression profiling of these cells. We then used this dataset to identify candidate transcription factors that may serve as glial markers or regulators of glial fate. Our analysis generated a database of developmental stage-related markers of Aldh1l1+ cells between murine embryonic day 13.5-18.5. Using these data we identify the bZIP transcription factor Nfe2l1 and demonstrate that it promotes glial fate under direct Sox9 regulatory control. Thus, this dataset represents a resource for identifying novel regulators of glial development.
Expression profiling of Aldh1l1-precursors in the developing spinal cord reveals glial lineage-specific genes and direct Sox9-Nfe2l1 interactions.
Specimen part
View SamplesAQM shows acute muscle wasting and weakness. Key aspects of AQM include muscle atrophy and myofilament loss. Gene expression profiling, using muscle biopsies from AQM, neurogenic atrophy and normal controls, showed that both myogenic and neurogenic atrophy share induction of myofiber-specific ubiquitin/proteosome pathways while only the AQM shows a specific strong induction of transforming growth factor (TGF)-beta/MAPK pathways.
Constitutive activation of MAPK cascade in acute quadriplegic myopathy.
No sample metadata fields
View SamplesThe objective of this study was to characterise a small panel of differentially expressed genes in the muscle that could be utilised to authenticate animals raised on pasture versus animals raised indoors on a concentrate based diet.
The application of transcriptomic data in the authentication of beef derived from contrasting production systems.
Specimen part
View SamplesThere is differential expression of genes between cases and controls using microarray analysis, and genes that are crucial for host defence responses are significantly up-regulated in cases during pneumococcal infection.
Peripheral blood RNA gene expression in children with pneumococcal meningitis: a prospective case-control study.
Specimen part, Disease, Disease stage
View SamplesRNA from wt and SIN1 knock-out MEF cell lines were compared
mTORC2 Responds to Glutamine Catabolite Levels to Modulate the Hexosamine Biosynthesis Enzyme GFAT1.
Specimen part
View SamplesTranscriptional responses to stimuli are regulated by tuning rates of transcript production and degradation. Here we show that stimulation-induced changes in transcript production and degradation rates can be inferred from simultaneously measured precursor mRNA (pre-mRNA) and mature mRNA profiles. Our studies on the transcriptome-wide responses to extracellular stimuli in different cellular model systems revealed hitherto unanticipated dynamics of transcript production and degradation rates. Intriguingly, genes with similar mRNA profiles often exhibit marked differences in the amplitude and onset of their production. Moreover, we identify a group of genes, which take advantage of the unexpectedly large dynamic range of production rates to expedite their induction by a transient production overshoot. These findings provide an unprecedented quantitative view on processes governing transcriptional responses, and may have broad implications for understanding their regulation at the transcriptional and post-transcriptional levels.
Coupled pre-mRNA and mRNA dynamics unveil operational strategies underlying transcriptional responses to stimuli.
Cell line, Treatment
View SamplesThe ERG gene belongs to the ETS family of transcription factors and has been found involved in atypical chromosomal rearrangements in several cancers. To gain insight into the oncogenic activity of ERG, we compared the gene expression profile of NIH-3T3 cells stably expressing the coding regions of the three main ERG oncogenic fusions: TMPRSS2/ERG (tERG), EWS/ERG and FUS/ERG,. We found that all the three ERG fusions significantly up-regulate PIM-1 expression in the NIH-3T3 cell line. PIM-1 is a serine/threonine kinase frequently over-expressed in cancers of haematological and epithelial origin. We show here that tERG expression induces PIM-1 in the non-malignant prostate cell line RWPE-1, strengthening the relation between tERG and PIM-1 up-regulation in the initial stages of prostate carcinogenesis. Silencing of tERG reversed PIM-1 induction. A significant association between ERG and PIM-1 expression in clinical prostate carcinoma specimens was found, suggesting that such a mechanism may be relevant in vivo. Chromatin Immunoprecipitation experiments showed that tERG directly binds to PIM-1 promoter in the RWPE-1 prostate cell line, suggesting that tERG could be a direct regulator of PIM-1 expression. The up-regulation of PIM-1 induced by tERG over-expression significantly modified CyclinB1 levels and increased the percentage of aneuploid cells in the RWPE-1 cell line after 24hrs of taxane-based treatment. Here we provide the first evidence for an ERG-mediated PIM-1 up-regulation in prostate cells in vitro and in vivo, suggesting a direct effect of ERG transcriptional activity in the alteration of genetic stability.
ERG deregulation induces PIM1 over-expression and aneuploidy in prostate epithelial cells.
Cell line
View SamplesBRAF is the most frequently mutated gene in melanoma. Constitutive activation of mutant BRAFV600E leads to aberrant Ras-independent MAPK signaling and cell transformation. Inhibition of mutant BRAF is a current front-line therapy for such cases, with improved survival compared with chemotherapy. Unfortunately, reactivation of MAPK signaling by several mechanisms has been shown to cause drug resistance and disease recurrence. In this work, we describe the co-occurrence of an in-frame deletion within an amplified BRAFV600E locus, and a missense point mutation of the transcriptional repressor BCORL1, in vemurafenib-resistant A375 melanoma cells. Functional data confirmed that truncated p47BRAFV600E and mutant BCORL1Q1076H both contribute to resistance. Interestingly, either endogenous BCORL1 silencing or ectopic BCORL1Q1076H expression mimicked the effects of a CRISPR/Cas9-edited BCORL1Q1076H locus, suggesting a change-of-function mutation. Transcriptomic data confirmed this hypothesis. Finally, we show that the pan-RAF inhibitor sorafenib is not affected by expression of BRAF deletion variant and effectively synergizes with vemurafenib to block resistant cells, suggesting a possible intervention for this class of mutants. Overall design: Nine total samples: 3 parental plus 3 BCORL1-WT and 3 BCORL1-MUT overexpressing cells
Concomitant BCORL1 and BRAF Mutations in Vemurafenib-Resistant Melanoma Cells.
Cell line, Subject
View Samples