Purpose:We have the first-reported set of glial-specific transcripts utilizing the Ribotag model. We use this model to explore glial changes in DNBS-induced inflammation and neurokinin-2 receptor (NK2R) antagonism. Methods: Actively translated mRNA profiles of the distal colon myeneteric plexi of Rpl22(+/-)Sox10(+/-) male and female mice 8-10 weeks old were obtained utilizing the HA-tagged ribosomal immunoprecipitation and downstream RNA extraction. Samples meeting RNA quality standards by 18S and 28S rRNA peaks by 2100 Bioanalyzer and RNA 6000 Nano LabChip Kit (Agilent) were deep sequenced with the Illumina HiSeq 4000. Results: We mapped approximately 30-50 millions reads per sample to the mouse genome (v88) and identified approximately 100K ribosome-associated transcripts, with Tuxedo workflow, in distal colon glial cells with DNBS-induced inflammation and NK2R antagonism and their respective controls. Of these transcripts, changes in biological processes associated with inflammation and other important enteric nervous system communications between samples have been identified. Conclusions: Our study demonstrates the first use of the Ribotag model to provide glial cell-specific actively-translated mRNA changes in DNBS-induced inflammation with and without functional NK2R signalling. Overall design: Distal colon glial mRNA samples from Ribotag Rpl22(+/-)Sox10(+/-) mice administered either saline or DNBS and DMSO vehicle or NK2R antagonism.
Communication Between Enteric Neurons, Glia, and Nociceptors Underlies the Effects of Tachykinins on Neuroinflammation.
Sex, Specimen part, Cell line, Subject
View SamplesAlthough host-parasitoid interactions are becoming well characterized at the organismal and cellular levels, much remains to be understood of the molecular bases for the host immune response and the parasitoids ability to defeat this immune response. Leptopilina boulardi and L. heterotoma, two closely related, highly infectious natural parasitoids of Drosophila melanogaster, appear to use very different infection strategies at the cellular level. Here, we further characterize cellular level differences in the infection characteristics of these two wasp species using newly derived, virulent inbred strains, and then use whole genome microarrays to compare the transcriptional response of Drosophila to each. While flies attacked by the melanogaster group specialist Leptopilina boulardi (strain Lb17) up-regulate numerous genes encoding proteolytic enzymes, components of the Toll and JAK/STAT pathways, and the melanization cascade as part of a combined cellular and humoral innate immune response, flies attacked by the generalist L. heterotoma (strain Lh14) do not appear to initiate an immune transcriptional response at the time points post-infection we assayed, perhaps due to the rapid venom-mediated lysis of host hemocytes (blood cells). Thus, the specialist parasitoid appears to invoke a full-blown immune response in the host, but suppresses and/or evades downstream components of this response. Given that activation of the host immune response likely depletes the energetic resources of the host, the specialists infection strategy seems relatively disadvantageous. However, we uncover the mechanism for one potentially important fitness tradeoff of the generalists highly immune suppressive infection strategy.
Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster.
No sample metadata fields
View SamplesAlcoholic hepatitis (AH) is the most severe form of alcoholic liver disease and occurs in patients with excessive alcohol intake It is characterized by marked hepatocellular damage, steatosis and pericellular fibrosis. Patients with severe AH have a poor short-term prognosis. Unfortunately, current therapies (i.e. corticosteroids and pentoxyphylline) are not effective in many patients and novel targeted therapies are urgently needed. The development of such therapies is hampered by a poor knowledge of the underlying molecular mechanisms. Based on studies from animal models, TNF alfa was proposed to play a pivotal role in the mechanisms of AH. Consequently, drugs interfering TNF alfa were tested in these patients. The results were disappointing due to an increased incidence of severe infections. Unluckily, there are not experimental models that mimic the main findings of AH in humans. To overcome this limitation, translational studies with human samples are required. We previously analyzed samples from patients with biopsy-proven AH. In these previous studies, we identified CXC chemokines as a potential therapeutic target for these patients. We expanded these previous observations by performing a high-throughout transcriptome analysis.
Transcriptome analysis identifies TNF superfamily receptors as potential therapeutic targets in alcoholic hepatitis.
No sample metadata fields
View SamplesA summary of the work associated to these microarrays is the following:
Role of caveolin 1, E-cadherin, Enolase 2 and PKCalpha on resistance to methotrexate in human HT29 colon cancer cells.
Specimen part, Cell line
View SamplesThe thyroid hormone receptor (TR) has been proposed to regulate target genes in the absence of triiodothyronine (T3), through the recruitment of the corepressors, NCoR and SMRT. NCoR and SMRT may thus play a key role in both hypothyroidism and resistance to thyroid hormone, though this has never been tested in vivo. To accomplish this we developed mice that express in the liver a NCoR protein (L-NCoRID) that cannot interact with the TR. L-NCoRID mice develop normally, however when made hypothyroid the repression of many positively regulated T3-target genes is abrogated, demonstrating that NCoR plays a specific and sufficient role in repression by the unliganded TR. Remarkably, in the euthyroid state, expression of many T3-targets are also upregulated in L-NCoRID mice, demonstrating that NCoR also determines the magnitude of the response to T3 in euthyroid animals. While positive T3 targets were upregulated in L-NCoRID mice in the hypo and euthyroid state there was less effect seen on negatively regulated T3 target genes. Thus, NCoR is a specific regulator of T3-action in vivo and mediates the activity of the unliganded TR. Furthermore, NCoR may play a key role in determining the differences in individual responses to similar levels of circulating T3.
The nuclear corepressor, NCoR, regulates thyroid hormone action in vivo.
No sample metadata fields
View SamplesThe purpose of this experiment is to anlyze the transcriptomic changes associated with Notch inhibition, by DAPT treatment, during cardiac reprogramming mediated by GHMT (Gata4, Hand2, Mef2c anf Tbx5). Overall design: RNA-seq was performed on MEFs infected with GHMT (Gata4, Hand2, Mef2c anf Tbx5) and treated for 15 days with DMSO (vehicle) or DAPT.
Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity.
Specimen part, Cell line, Treatment, Subject
View SamplesUnveiling the regulatory pathways maintaining hepatic stellate cells (HSC) in a quiescent (q) phenotype is essential to develop new therapeutic strategies to treat fibrogenic diseases. To uncover the miRNA-mRNAs regulatory interactions in qHSCs, HSCs were FACS-sorted from healthy livers and activated HSCs were generated in vitro. MiRNA Taqman array analysis showed HSCs expressed a low number of miRNA, from which 46 were down-regulated and 212 up-regulated upon activation. Computational integration of miRNA and gene expression profiles revealed that 66% of qHSCs miRNAs correlated with more than 6 altered targeted mRNAs (17,2810,7 targets/miRNA), whereas aHSC-associated miRNAs had an average of 1,49 targeted genes. Interestingly, interaction networks generated by miRNA-targeted genes in qHSCs were associated with key HSCs activation processes. Next, selected miRNAs were validated in healthy and cirrhotic human livers and miR-192 was chosen for functional analysis. Down-regulation of miR-192 in HSC was found to be an early event during fibrosis progression in mouse models of liver injury. Moreover, mimic assays for miR-192 in HSCs revealed its role in HSC activation, proliferation and migration. Together, these results uncover the importance of miRNAs in the maintenance of qHSC phenotype and form the basis for understanding the regulatory networks in HSCs.
Integrative miRNA and Gene Expression Profiling Analysis of Human Quiescent Hepatic Stellate Cells.
Specimen part
View SamplesBackground and aims: There are considerable evidences demonstrating that angiogenesis and chronic inflammation are mutually dependent. However, although cirrhosis progression is characterized with a chronic hepatic inflammatory process, this connection is not sufficiently explored as a therapeutic strategy. Therefore, this study was aimed to assess the potential benefits of targeting angiogenesis in cirrhotic livers to modulate inflammation and fibrosis. For this purpose, we evaluate the therapeutic utility of angiogenesis inhibitors. Methods: The in vivo effects of angiogenesis inhibitors were monitored in liver of cirrhotic rats by measuring angiogenesis, inflammatory infiltrate, fibrosis, a-smooth muscle actin (a-SMA) accumulation, differential gene expression (by microarrays), and portal pressure. Results: Cirrhosis progression was associated with a significant enhancement of vascular density and expression of vascular endothelial growth factor-A (VEGF-A), angiopoietin-1, angiopoietin-2 and placental growth factor (PlGF) in cirrhotic livers. The newly formed hepatic vasculature expressed vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Interestingly, the expression of these adhesion molecules correlated well with local inflammatory infiltrate. Livers of cirrhotic rats treated with angiogenesis inhibitors presented a significant decrease in hepatic vascular density, inflammatory infiltrate, a-SMA abundance, collagen expression and portal pressure. Conclusion: Angiogenesis inhibitors may offer a potential novel therapy for cirrhosis due to its multiple mechanisms of action against angiogenesis, inflammation and fibrosis in cirrhotic livers.
Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats.
No sample metadata fields
View SamplesWe used microarrays to examine changes in gene expression in multiple myeloma cell lines following treatment with arsenic trioxide and darinaparsin
Darinaparsin induces a unique cellular response and is active in an arsenic trioxide-resistant myeloma cell line.
No sample metadata fields
View SamplesWe previously showed that severe liver diseases are characterized by expansion of liver progenitor cells (LPC), which correlates with disease severity. However, the origin and role of LPC in liver physiology and in the hepatic response to injury remains a contentious topic. We have now used genetic lineage tracing of Hnf1-expressing biliary duct cells to assess their contribution to LPC expansion and hepatocyte generation during normal liver homeostasis, and following different types of liver injury. We found that ductular reaction cells in human cirrhotic livers express HNF1. However, HNF1 expression was not present in newly generated EpCAM-positive hepatocytes. Using a tamoxifen-inducible Hnf1CreER/R26RYFP/LacZ mouse, we show that there is no contribution of the biliary epithelium to hepatocyte turnover during liver homeostasis in healthy mice. Moreover, after loss of liver mass, Hnf1+ LPC did not contribute to hepatocyte regeneration. We also assessed the contribution of Hnf1+ cells following acute and repeated liver injury. All animal models showed expansion of LPC, as assessed by immunostaining and gene expression profile of sorted YFP-positive cells. A contribution of Hnf1+ LPC to hepatocyte generation was not detected in animal models of liver injury with preserved hepatocyte regenerative potential such as acute acetaminophen, carbon tetrachloride injury, or chronic diethoxycarbonyl-1,4-dihydro-collidin (DDC)-diet. However, in mice fed with choline-deficient ethionine-supplemented (CDE)-diet, which causes profound hepatocyte damage and arrest, a small number of hepatocytes were derived from Hnf1+ cells. Conclusion: Hnf1+ cells do not participate in hepatocyte turnover in the healthy liver or during liver regeneration after partial hepatectomy. After liver injury, LPC arise from the biliary duct epithelium, which gives rise to a limited number of hepatocytes only when hepatocyte regeneration is compromised.
The biliary epithelium gives rise to liver progenitor cells.
No sample metadata fields
View Samples