Fzd2 is a Wnt receptor expressed in the embryonic lung. We made a conditional knockout of Fzd2 to specifically address the role of signaling through Fzd2 in lung epithelial development.
Wnt ligand/Frizzled 2 receptor signaling regulates tube shape and branch-point formation in the lung through control of epithelial cell shape.
Specimen part
View SamplesEzh2 epigenetically suppresses developmentally-regulated genes. Ezh2 is highly expressed during development, including in the lung. We knocked out Ezh2 in the developing lung epithelium using a Shh-cre driver which is active in foregut endoderm prior to lung morphogenesis. Many developmentally regulated genes became derepressed in the mutant lungs, leading to defects in lung development.
Ezh2 represses the basal cell lineage during lung endoderm development.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Sox17 expression confers self-renewal potential and fetal stem cell characteristics upon adult hematopoietic progenitors.
Age, Specimen part, Treatment
View SamplesThe transcription factor SOX17 is expressed by fetal, but not adult hematoipoietic stem cells (HSCs), and is required for the maintenance of fetal and neonatal, but not adult, HSCs. In the current study we show that ectopic expression of Sox17 in adult HSCs and transiently reconstituting multipotent progenitors was sufficient to confer increased self-renewal potential and the expression of fetal HSC genes including fetal HSC surface markers.
Sox17 expression confers self-renewal potential and fetal stem cell characteristics upon adult hematopoietic progenitors.
Specimen part, Treatment
View SamplesThe transcription factor SOX17 is expressed by fetal, but not adult hematoipoietic stem cells (HSCs), and is required for the maintenance of fetal and neonatal, but not adult, HSCs. In the current study we show that ectopic expression of Sox17 in adult HSCs and transiently reconstituting multipotent progenitors was sufficient to confer increased self-renewal potential and the expression of fetal HSC genes including fetal HSC surface markers.
Sox17 expression confers self-renewal potential and fetal stem cell characteristics upon adult hematopoietic progenitors.
Age, Specimen part, Treatment
View SamplesTo identify potential biological functions for three lncRNAs (NANCI, LL12, and LL34) we used shRNAs to knockdown expression of lncRNAs in MLE12 cells, a cell resembling type two lung epithelial cells. This data set contains the microarrays looking at gene expression.
Long noncoding RNAs are spatially correlated with transcription factors and regulate lung development.
Treatment
View SamplesThe molecular mechanism of how lung sacculation occurs is poorly understood. Loss of epithelial Hdac3 results in defects in the proper expansion of distal lung saccules into primitive alveoli. In this microarray, we seek to investigate the gene profile changes caused by loss of Hdac3 to better understand the molecular pathways that are regulated by Hdac3 during lung sacculation.
HDAC3-Dependent Epigenetic Pathway Controls Lung Alveolar Epithelial Cell Remodeling and Spreading via miR-17-92 and TGF-β Signaling Regulation.
Specimen part
View SamplesPurpose: Understand the synergistic relationship between the methyltransferases Set1 and Set5 in the regulation of gene expression. Methods: Total mRNA was obtained from two independent biological replicates each of wildtype (WT), set1?, set5?, SET5 Y402A and set1?set5? S. cerevisiae strains. Libraries were generated and sequenced using an Illumina HiSeq2000 platform. The sequence reads that passed quality filters were mapped using TopHat and expression levels were quantified using Cufflinks. Results: We generated FPKM expression values for each transcript and identified the differentially expressed genes using an FDR-adjusted p-value of 0.05. Subsequent data analysis was restricted to genes with fold-change greater than 1.7 relative to WT. Our results show that Set1 and Set5 have roles primarily in transcription repression. Moreover, lack of both Set1 and Set5 results in a synergistic exhacerbation of the transcriptional derepression observed in the single mutants. Further analysis revealed a specific enrichment of the Set5/Set1-repressed genes near repetitive DNA sequences of the genome. Conclusions: Our study uncovers an unexpected synergistic role of Set1 and Set5 in transcription repression of telomeric regions and Ty retrotransposons. Overall design: mRNA profiles of wildtype (WT), set1?, set5?, SET5 Y402A and set1?set5? were generated by sequencing using an Illumina HiSeq2000 platform. Two biological replicates of each strain were used.
Transcriptome profiling of Set5 and Set1 methyltransferases: Tools for visualization of gene expression.
Cell line, Subject
View SamplesAs Prdm16 deficiency reduces self-renewal potential and depletes neural stem cells in culture we decided to investigate the underlying molecular mechanisms of the neural stem cells depletion in the Prdm16 deficient animals. For the experiment we used Prdm16Gt(OST67423)Lex (Prdm16LacZ) genetrap mice obtained from the NIH Mutant Mouse Regional Resource Center (http://www.mmrrc.org/).
Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress.
Specimen part
View SamplesThe polyadenosine RNA binding proteins (Pabs) represent one class of RNA binding proteins that play critical roles in gene expression. This class includes the well-studied nuclear and cytoplasmic Pabs, PABPN1 and PABPC1, respectively, as well as the newly characterized nuclear Pab, zinc finger CCCH-type containing #14, or ZC3H14. ZC3H14 was recently linked to a form of intellectual disability, suggesting a critical role for ZC3H14 in neurons; however, the post-transcriptional function of ZC3H14 is unknown. In this study, we performed a microarray analysis of cells depleted of ZC3H14 or PABPN1 in MCF-7 breast cancer cells. These results revealed that PABPN1 significantly affected ~17% of expressed transcripts as compared to ZC3H14, which affected ~1% of expressed transcripts, suggesting that ZC3H14 has specific mRNA targets. The differentially expressed mRNAs identified in this analysis not only provide information about the classes and types of transcripts that are regulated by these proteins, but also represent a set of transcripts that could be directly bound by ZC3H14 and/or PABPN1.
The Polyadenosine RNA-binding Protein, Zinc Finger Cys3His Protein 14 (ZC3H14), Regulates the Pre-mRNA Processing of a Key ATP Synthase Subunit mRNA.
Cell line
View Samples