refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1247 results
Sort by

Filters

Technology

Platform

accession-icon GSE49370
Role of Fzd2 in lung epithelium development
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Fzd2 is a Wnt receptor expressed in the embryonic lung. We made a conditional knockout of Fzd2 to specifically address the role of signaling through Fzd2 in lung epithelial development.

Publication Title

Wnt ligand/Frizzled 2 receptor signaling regulates tube shape and branch-point formation in the lung through control of epithelial cell shape.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60660
Expression data from Ezh2 epithelial knock-out mouse lungs at E14.5
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Ezh2 epigenetically suppresses developmentally-regulated genes. Ezh2 is highly expressed during development, including in the lung. We knocked out Ezh2 in the developing lung epithelium using a Shh-cre driver which is active in foregut endoderm prior to lung morphogenesis. Many developmentally regulated genes became derepressed in the mutant lungs, leading to defects in lung development.

Publication Title

Ezh2 represses the basal cell lineage during lung endoderm development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE52389
Long noncoding RNAs are spatially correlated with transcription factors and regulate lung development
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

To identify potential biological functions for three lncRNAs (NANCI, LL12, and LL34) we used shRNAs to knockdown expression of lncRNAs in MLE12 cells, a cell resembling type two lung epithelial cells. This data set contains the microarrays looking at gene expression.

Publication Title

Long noncoding RNAs are spatially correlated with transcription factors and regulate lung development.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE70684
Gene expression profile of E18.5 mouse lungs lacking epithelial Hdac3
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The molecular mechanism of how lung sacculation occurs is poorly understood. Loss of epithelial Hdac3 results in defects in the proper expansion of distal lung saccules into primitive alveoli. In this microarray, we seek to investigate the gene profile changes caused by loss of Hdac3 to better understand the molecular pathways that are regulated by Hdac3 during lung sacculation.

Publication Title

HDAC3-Dependent Epigenetic Pathway Controls Lung Alveolar Epithelial Cell Remodeling and Spreading via miR-17-92 and TGF-β Signaling Regulation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26850
Promotion of Lung Tumorigenesis By Beta-catenin
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Although mutations in Kras are present in 21% of lung tumors, there is a high level of heterogeneity in phenotype and outcomes amongst lung cancer patients suggesting the importance of other pathways. Wnt/-catenin signaling is a known oncogenic pathway that plays a well defined role in colon and skin cancer but its role in lung cancer remains unclear. We show that activation of Wnt/-catenin in the bronchiolar epithelium of the adult lung does not promote tumor development by itself. However, activation of Wnt/- catenin signaling leads to a dramatic increase in tumor formation both in overall tumor number and size compared to KrasG12D alone. We show that activation of Wnt/- catenin signaling significantly alters the KrasG12D tumor phenotype resulting in a phenotypic switch from bronchiolar epithelium to the highly proliferative distal progenitors found in the embryonic lung. This is associated with a decrease in E- cadherin expression at the cell surface which may increase metastasis in Wnt/-catenin signaling positive tumors. Together, these data suggest that activation of Wnt/-catenin signaling in combination with other oncogenic pathways in lung epithelium may lead to a more aggressive phenotype due to the imposition of an embryonic distal progenitor phenotype accompanied by decreased E-cadherin expression.

Publication Title

Wnt/β-catenin signaling accelerates mouse lung tumorigenesis by imposing an embryonic distal progenitor phenotype on lung epithelium.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE34584
The role of Foxp1/4 in lung development
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Foxp1/4 transcription factors are conserved transcriptional repressors expressed in overlapping patterns during lung development as well as in the adult lung. However, the role of Foxp1/4 in development and homeostasis of the pseudostratified epithelium of the proximal airways and trachea is unknown.

Publication Title

Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE100442
Novel molecular and phenotypic insights into congenital lung malformations
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

The purpose of this study was to identify gene expression changes associated with congenital lung malformations.

Publication Title

Novel Molecular and Phenotypic Insights into Congenital Lung Malformations.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon SRP102516
Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor [human RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The lung alveolus is the primary site of gas exchange in mammals. Within the alveolus, the alveolar type 2 (AT2) epithelial cell population generates surfactant to maintain alveolar structure and harbors a regenerative capacity to repair the alveolus after injury. We show that a Wnt-responsive alveolar epithelial progenitor (AEP) lineage within the AT2 cell population is critical for regenerating the alveolar niche. AEPs are a stable lineage during alveolar homeostasis but expand rapidly to regenerate a majority of the alveolar epithelium after acute lung injury. AEPs exhibit a distinct transcriptome, epigenome, and functional phenotype with specific responsiveness to Wnt and FGF signaling that modulates differentiation and self-renewal, respectively. Importantly, human AEPs (hAEPs) can be isolated and characterized through a conserved surface marker and are required for human alveolar self-renewal and differentiation using alveolar organoid assays. Together, our findings show that AEPs are an evolutionarily conserved alveolar progenitor lineage essential for regenerating the alveolar niche in the mammalian lung. Overall design: Examination of open chromatin in 2 subtypes of alveolar epithelial cell populations

Publication Title

Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor.

Sample Metadata Fields

Sex, Age, Specimen part, Race, Subject

View Samples
accession-icon GSE59142
Transcriptional profile of genes affected by the loss of Brd4 in the embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

BRD4 is an important epigenetic reader implicated in the pathogenesis of a number of different cancers and other diseases. Brd4-null mouse embryos die shortly after implantation and are compromised in their ability to maintain the inner cell mass (ICM), which gives rise to embryonic stem cells (ESCs). We investigated the functions of Brd4 in the ESCs in the present study.

Publication Title

BRD4 regulates Nanog expression in mouse embryonic stem cells and preimplantation embryos.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5406
Human ischemic cardiomyopathy, idiopathic cardiomyopathy, and nonfailing controls
  • organism-icon Homo sapiens
  • sample-icon 210 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Left ventricular myocardium was snap-frozen at time of cardiac transplantation from patients with advanced idiopathic or ischemic cardiomyopathy, or at time of harvest from unused donor heart that serve as a nonfailing control. No subjects received mechanical support devices.

Publication Title

Transcriptional genomics associates FOX transcription factors with human heart failure.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact