To identify genes regulated by Rx3 during optic vesicle morphogenesis, adult zebrafish carriers of a null rx3 mutation were mated. Before 13 hours post fertilization (hpf), the earliest time point at which optic vesicle evagination phenotypes could be reliably detected, offspring were phenotypically separated into pools comprising of mutants with an absence of optic vesicles or siblings exhibiting a wild-type phenotype. Three replicates of pooled RNA samples from 13 hpf eyeless mutants (rx3-/-) or phenotypically wild-type siblings (rx3+/+ or rx3+/-), and one replicate of 13 hpf wild-type zebrafish larva were collected for whole transcriptome sequencing. Overall design: Whole transcriptome sequencing (RNA-seq) was performed on zebrafish rx3-/- mutants, wild-type siblings and wild-type AB strains at 13 hpf
Genes and signaling networks regulated during zebrafish optic vesicle morphogenesis.
No sample metadata fields
View SamplesFzd2 is a Wnt receptor expressed in the embryonic lung. We made a conditional knockout of Fzd2 to specifically address the role of signaling through Fzd2 in lung epithelial development.
Wnt ligand/Frizzled 2 receptor signaling regulates tube shape and branch-point formation in the lung through control of epithelial cell shape.
Specimen part
View SamplesEzh2 epigenetically suppresses developmentally-regulated genes. Ezh2 is highly expressed during development, including in the lung. We knocked out Ezh2 in the developing lung epithelium using a Shh-cre driver which is active in foregut endoderm prior to lung morphogenesis. Many developmentally regulated genes became derepressed in the mutant lungs, leading to defects in lung development.
Ezh2 represses the basal cell lineage during lung endoderm development.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Sox17 expression confers self-renewal potential and fetal stem cell characteristics upon adult hematopoietic progenitors.
Age, Specimen part, Treatment
View SamplesThe transcription factor SOX17 is expressed by fetal, but not adult hematoipoietic stem cells (HSCs), and is required for the maintenance of fetal and neonatal, but not adult, HSCs. In the current study we show that ectopic expression of Sox17 in adult HSCs and transiently reconstituting multipotent progenitors was sufficient to confer increased self-renewal potential and the expression of fetal HSC genes including fetal HSC surface markers.
Sox17 expression confers self-renewal potential and fetal stem cell characteristics upon adult hematopoietic progenitors.
Specimen part, Treatment
View SamplesThe transcription factor SOX17 is expressed by fetal, but not adult hematoipoietic stem cells (HSCs), and is required for the maintenance of fetal and neonatal, but not adult, HSCs. In the current study we show that ectopic expression of Sox17 in adult HSCs and transiently reconstituting multipotent progenitors was sufficient to confer increased self-renewal potential and the expression of fetal HSC genes including fetal HSC surface markers.
Sox17 expression confers self-renewal potential and fetal stem cell characteristics upon adult hematopoietic progenitors.
Age, Specimen part, Treatment
View SamplesCombinatorial actions of relatively few transcription factors control hematopoietic differentiation. To investigate this process in erythro-megakaryopoiesis, we correlated the genome-wide chromatin occupancy signatures of four master hematopoietic transcription factors (GATA1, GATA2, TAL1, and FLI1) and three diagnostic histone modification marks with the gene expression changes that occur during development of primary cultured megakaryocytes (MEG) and primary erythroblasts (ERY) from murine fetal liver hematopoietic stem/progenitor cells. We identified a robust, genome-wide mechanism of MEG-specific lineage priming by a previously described stem/progenitor cell-expressed transcription factor heptad (GATA2, LYL1, TAL1, FLI1, ERG, RUNX1, LMO2) binding to MEG-associated cis-regulatory modules (CRMs) in multipotential progenitors. This is followed by genome-wide GATA factor switching that mediates further induction of MEG-specific genes following lineage commitment. Interaction between GATA and ETS factors appears to be a key determinant of these processes. In contrast, ERY-specific lineage priming is biased toward GATA2-independent mechanisms. In addition to its role in MEG lineage priming, GATA2 plays an extensive role in late megakaryopoiesis as a transcriptional repressor at loci defined by a specific DNA signature. Our findings reveal important new insights into how ERY and MEG lineages arise from a common bipotential progenitor via overlapping and divergent functions of shared hematopoietic transcription factors.
Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis.
Specimen part
View SamplesCombinatorial actions of relatively few transcription factors control hematopoietic differentiation. To investigate this process in erythro-megakaryopoiesis, we correlated the genome-wide chromatin occupancy signatures of four master hematopoietic transcription factors (GATA1, GATA2, SCL/TAL1 and FLI1) and three diagnostic histone modification marks with the gene expression changes that occur during development of primary megakaryocytes (MEG) and erythroblasts (ERY) from murine fetal liver hematopoietic stem/progenitor cells. We identified a robust, genome-wide mechanism of MEG-specific lineage priming by a previously described stem/progenitor cell-expressed transcription factor heptad (GATA2, LYL1, SCL/TAL1, FLI1, ERG, RUNX1, LMO2) binding to MEG-specific cis-regulatory modules in multipotential hematopoietic progenitors. This is followed by genome-wide GATA factor switching that mediates further induction of MEG-specific genes following lineage commitment. Interaction between GATA and ETS factors appears to be a key determinant of these processes. In contrast, ERY-specific lineage priming occurs is biased toward GATA2-independent mechanisms. In addition to its role in MEG lineage priming, GATA2 plays an extensive role in late megakaryopoiesis as a transcriptional repressor at loci defined by a specific DNA signature. Our findings reveal important new insights into how ERY and MEG lineages arise from a common bipotential precursor via overlapping and divergent functions of shared hematopoietic transcription factors.
Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis.
Specimen part
View SamplesTo identify potential biological functions for three lncRNAs (NANCI, LL12, and LL34) we used shRNAs to knockdown expression of lncRNAs in MLE12 cells, a cell resembling type two lung epithelial cells. This data set contains the microarrays looking at gene expression.
Long noncoding RNAs are spatially correlated with transcription factors and regulate lung development.
Treatment
View SamplesThe molecular mechanism of how lung sacculation occurs is poorly understood. Loss of epithelial Hdac3 results in defects in the proper expansion of distal lung saccules into primitive alveoli. In this microarray, we seek to investigate the gene profile changes caused by loss of Hdac3 to better understand the molecular pathways that are regulated by Hdac3 during lung sacculation.
HDAC3-Dependent Epigenetic Pathway Controls Lung Alveolar Epithelial Cell Remodeling and Spreading via miR-17-92 and TGF-β Signaling Regulation.
Specimen part
View Samples