The goal of this study is to simultaneously interrogate host and parasite gene expression programs in human macrophages infected with the intracellular parasites from the genus Leishmania. We conducted high-resolution sequencing of the transcriptomes of human macrophages infected with Leishmania spp. using an RNA-seq approach. An array of computational tools was applied to map reads to the Leishmania and human genomes and reconstruct full-length transcripts. mRNA abundance was determined for Leishmania and human genes at various time points post-infection, enabling us to identify co-expression patterns that correlate with the biology of the parasite and to obtain a preliminary analysis of the dynamic nature of parasite and host cell gene expression programs in the context of infection. This study provides a solid framework for future functional and genomic studies of leishmaniasis as well as intracellular pathogenesis in general.
Dual Transcriptome Profiling of Leishmania-Infected Human Macrophages Reveals Distinct Reprogramming Signatures.
No sample metadata fields
View SamplesPolycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder that affects 5-10% of reproductive aged women. The hallmark characteristic of PCOS is increased ovarian androgen synthesis. Previous studies by our laboratory demonstrated that increased androgen synthesis is a stable biochemical phenotype of PCOS theca cells which are the primary source of ovarian androgen production. The increase in theca cell steroidogenesis was due to an increase in expression of several steroidogenic enzymes including CYP17 and CYP11A but not StAR. Interestingly, the anti-epileptic drug valproic acid induces increased theca cell androgen synthesis and increased CYP17 and CYP11A mRNA levels. In this study we have characterized the gene expression profiles of theca cells obtained from normal or polycystic ovaries which were maintained in the absence (UNT) or presence (VPA) of valproic acid. The data identifed new candidate genes and novel signaling pathways which may contribute to the manifestation of PCOS phenotypes including increased androgen production. The experiments in this study were carried using the Affymetrix U133A and U133B oligonucleotide chips.
Valproate-induced alterations in human theca cell gene expression: clues to the association between valproate use and metabolic side effects.
No sample metadata fields
View SamplesHfe disruption in the mouse leads to experimental hemochromatosis by a mechanism which remains elusive. Evidence for at least five modifier genes has been obtained. These account for the higher iron load of Hfe-deficient D2 mice compared to B6 mice. Gene expression profling was used to clarify the mechanism of Hfe action and to identify potential modifier genes.
Gene expression profiling of Hfe-/- liver and duodenum in mouse strains with differing susceptibilities to iron loading: identification of transcriptional regulatory targets of Hfe and potential hemochromatosis modifiers.
No sample metadata fields
View SamplesMacrophages readily change their phenotype in response to exogenous stimuli. In this work, macrophages were stimulated under a variety of experimental conditions, and alterations in mRNA levels were analyzed. We identified three transcriptionally related populations of macrophages with immunoregulatory activity. They were generated by stimulating cells with TLR ligands, in the presence of three different “reprogramming” signals; high density immune complexes (IC), prostaglandin E2 (PGE2), or adenosine (Ado). All three of these cell populations produced higher levels of transcripts for IL-10, and growth and angiogenic factors. They also secreted reduced levels of inflammatory cytokines IL-1Beta, IL-6, and IL-12. All three macrophage phenotypes could partially rescue mice from lethal endotoxemia, and therefore we consider each to have immunoregulatory activity. This immunoregulatory activity occurred equally well in macrophages from stat6-deficient mice. The lack of STAT6 did not affect macrophages’ ability to reciprocally change cytokine production or to rescue mice from lethal endotoxemia. Furthermore, treatment of macrophages with IL-4 failed to induce similar phenotypic or transcriptional alterations. This work demonstrates that there are multiple ways to generate macrophages with immunoregulatory activity. These immunoregulatory macrophages are transcriptionally and functionally related, and quite distinct from macrophages treated with IL-4.
The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling.
No sample metadata fields
View SamplesMacrophage activation by bacterial lipopolysaccharides (LPS) is induced through Toll-like receptor 4 (TLR4). The synthesis and activity of TLR4 downstream signalling molecules modulates the expression of pro- and anti-inflammatory cytokines. To address the impact of post-transcriptional regulation on that process, we performed RIP-Chip analysis. Differential association of mRNAs with heterogeneous ribonucleoprotein K (hnRNP K), an mRNA-specific translational regulator in differentiating haematopoietic cells, was studied in non-induced and LPS-activated macrophages. Analysis of interactions affected by LPS revealed an enrichment of mRNAs encoding TLR4 downstream kinases and their modulators. We focused on transforming growth factor activated kinase-1 (TAK1), a central player in TLR4 signalling. HnRNP K interacts specifically with a sequence in the TAK1 mRNA 3' UTR in vitro. Silencing of hnRNP K does not affect TAK1 mRNA synthesis and stability, but enhances TAK1 mRNA translation, resulting in elevated TNF-alpha, IL-1beta and IL-10 mRNA expression. Our data suggest that the hnRNP K-3' UTR complex inhibits TAK1 mRNA translation in non-induced macrophages. LPS-dependent TLR4 activation abrogates translational repression and newly synthesised TAK1 initiates the inflammatory response of macrophages.
Translation control of TAK1 mRNA by hnRNP K modulates LPS-induced macrophage activation.
Specimen part, Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury.
No sample metadata fields
View SamplesWe performed ontogenic, transcriptomic and spatial characterization of sciatic nerve Macs (snMacs). Using multiple fate-mapping systems, we show that snMacs do not derive from the early embryonic precursors colonizing the CNS, but originate primarily from late embryonic precursors and get replaced by bone marrow-derived Macs over time. Using single-cell profiling, we identified a tissue-specific core signature of snMacs and found two spatially-separated snMacs: Relmα + Mgl1 + snMacs in the epineurium and Relmα Mgl1 snMacs in the endoneurium. Globally, snMacs lack most core signature genes of microglia, with only the endoneurial subset expressing a restricted number of these genes. Single-cell transcriptomics revealed that in response to injury both snMacs respond differently and that the PNS, in contrast to the CNS, is permissive to prolonged engraftment of monocyte-derived Macs recruited upon injury.
Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury.
No sample metadata fields
View SamplesThe goal of this study is to simultaneously examine host and parasite gene expression programs in skin lesions of human patients infected with the intracellular parasite Leishmania. We conducted high-resolution sequencing of the transcriptomes from early and late stage cutaneous leishmaniasis biopsies using an RNA-seq approach. An array of computational tools was applied to map reads to the Leishmania and human genomes and reconstruct full-length transcripts. mRNA abundance was determined for Leishmania and human genes, helping to explain tuning of the immune response to parasite transcriptomic profiles present in the lesion microenvironment. This data provided a deeper look at the transcriptomic profile of the host response in conjunction with a novel look at the parasite transcriptome in human cutaneous lesions. These data also offer the first glimpse of Leishmania gene expression profiles specific to the cutaneous manifestation of disease in human patients. This metatranscriptomic study provides a solid framework for future functional, genomic, and clinical studies of leishmaniasis as well as intracellular pathogenesis in general.
Meta-transcriptome Profiling of the Human-Leishmania braziliensis Cutaneous Lesion.
No sample metadata fields
View SamplesChildren with acute measles were admitted to the University Teaching Hospital in Lusaka, Zambia. Peripheral blood was collected at hospital entry, discharge and 1-month follow-up. Control samples were also collected from uninfected children. All children were HIV negative.
Gene expression changes in peripheral blood mononuclear cells during measles virus infection.
No sample metadata fields
View SamplesIntegrins have long been known to have a role in adhesion of neural stem cells within the neuroepithelium, but little is known about their role in regulating stem cell behaviour through signalling. We aimed to investigate the effect of integrin-beta 1 signalling (itgb1) on these cells by transfection of a constitutively active itgb1. This creates a heterogenous pattern of expression allowing the study of cell-autonomous and non-cell autonomous effects.
Integrin signalling regulates the expansion of neuroepithelial progenitors and neurogenesis via Wnt7a and Decorin.
Specimen part
View Samples