Smyd3 is a histone methyltransferase implicated in tumorigenesis. Here we show that Smyd3 expression in mice is required but not sufficient for chemically induced liver and colon cancer formation. In these organs Smyd3 is functioning in the nucleus as a direct transcriptional activator of several key genes involved in cell proliferation, epithelial-mesenchymal transition, JAK/Stat3 oncogenic pathways, as well as of the c-myc and b-catenin oncogenes. Smyd3 specifically interacts with H3K4Me3-modified histone tails and is recruited to the core promoter regions of many but not all active genes. Smyd3 binding density on target genes positively correlates with increased RNA Pol-II density and transcriptional outputs. The results suggest that Smyd3 is an essential transcriptional potentiator of a multitude of cancer-related genes. Overall design: Standard Smyd3-deficient (Smyd3-KO) mice were generated using gene-trap ES cell clones (AS0527 from International Gene Trap Consortium), in which a selection cassette, containing the splice acceptor site from mouse EN2 exon 2 followed by the beta-galactosidase and neomycin resistance gene fusion gene and the SV40 polyadenylation sequence was inserted into the 5th intron of the Smyd3 gene. The resulting mice were devoid of Smyd3 mRNA and protein in all tissues, including liver and colon. For the generation of Smyd3-Tg mice the open reading frame of the mouse Smyd3 cDNA, which contained 3 Flag epitopes at the 3’ end was inserted into the StuI site of the pTTR1-ExV3 plasmid (Yan et al, 1990). The 6.8 kb HindIII fragment containing the mouse transthyretin enhancer/promoter, intron 1, Smyd3 cDNA, three Flag epitopes and SV40 poly-A site was used to microinject C57Bl/6 fertilized oocytes. Founder animals were identified by Southern blotting and crossed with F1 mice to generate lines. Specific overexpression in the liver was tested by RT-PCR analysis in different tissues.
Smyd3 Is a Transcriptional Potentiator of Multiple Cancer-Promoting Genes and Required for Liver and Colon Cancer Development.
No sample metadata fields
View SamplesMastic oil from Pistacia lentiscus variation chia, a blend of bioactive terpenes with recognized medicinal properties, has been recently shown to exert anti-tumor activity. Lewis lung carcinoma (LLC) cells are mastic oil-susceptible cells and were used in this work to study the effects of mastic oil at the transcriptomic level.
A transcriptomic computational analysis of mastic oil-treated Lewis lung carcinomas reveals molecular mechanisms targeting tumor cell growth and survival.
Cell line
View SamplesThe study demontrates differences in the transcriptome ( both of protein coding transcripts and long non-coding RNAs) in the unilateral ureteric obstruction model of renal fibrosis. Overall design: Renal tissue was studied from animals undergoing sham operation (as controls) or right ureteric ligation. Animals were sacrificed 2 and 8 days following ligation and the right kidney tissue was examined.
Whole-transcriptome analysis of UUO mouse model of renal fibrosis reveals new molecular players in kidney diseases.
Sex, Age, Specimen part, Cell line, Subject
View SamplesThe canonical Wnt pathway plays a central role in stem cell maintenance, differentiation and proliferation in the intestinal epithelium. Constitutive, aberrant activity of the TCF4/ß-catenin transcriptional complex is the primary transforming factor in colorectal cancer. Despite significant recent inroads, the full complement of Wnt target genes and the mechanisms of regulation remain incompletely understood. Here we identify a nuclear long non-coding RNA, termed WiNTRLINC1, as a direct target of TCF4/ß-catenin in colorectal cancer cells. WiNTRLINC1 positively regulates the expression of its close neighbor ASCL2, a transcription factor that controls intestinal stem cell fate. WiNTRLINC1 interacts with TCF4/ß-catenin to mediate the juxtaposition/physical contact of its own promoter with the regulatory regions of ASCL2. ASCL2, in turn, regulates WiNTRLINC1 expression. This feedforward regulatory loop controls stem cell-related gene expression and is highly amplified in colorectal cancer. Overall design: Derivatives of Ls174T colon cancer cells, overexpressing the Tet repressor were used for the construction of inducible overexpressing a shRNA against the WiNTRLINC1 long non coding RNA upon treatment with doxyxycline. siRNAs against WiNTRLINC1 were designed with the siDesign center tool from Dharmacon and their sequences were used for the construction of the shRNA stem loop structure as described in EMBO Rep. 2003 Jun;4(6):609-15. The modified pTER vector was used as a backbone for constructing the shRNA cassette as described in EMBO Rep. 2003 Jun;4(6):609-15. Positive cell clones were screened with RT-PCR in order to validate the efficiency of the knockdown of WiNTRLINC1. The Ls174T derivative cell line inducibly overexpressing a shRNA against ASCL2 has been described previously in Cell. 2009 Mar 6;136(5):903-12. RNA deep sequencing was performed in the WiNTRLINC1 KD and ASCL2 KD cells compared to controls cells in order to detect changes in gene expression due to the loss of either WiNTRLINC1 or ASCL2.
A Positive Regulatory Loop between a Wnt-Regulated Non-coding RNA and ASCL2 Controls Intestinal Stem Cell Fate.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy.
Specimen part
View SamplesOur goal was to transcriptionally profile Prdm1+ cell lineages of maternal and embryonic origin in mid-gestation mouse placenta in order to study vascular mimicry and additional processes in the placenta. Overall design: Profiling of 61 single cells and 17 clusters of 2 or 3 cells chosen based on expression of Prdm1, a paternally inherited Prdm1-Venus fluorescent reporter, progenitor trophoblast marker Gjb3 and spiral artery trophoblast giant cell marker Prl7b1.
Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy.
Specimen part, Cell line, Subject
View SamplesExpression profiling of wild-type and Prdm1 null mouse trophoblast giant cell cultures using Illumina whole genome mouse V2 arrays.
Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy.
Specimen part
View SamplesIn this study, we characterize transciprtional phenotypes of airway macrophagages (AMs) throughout homeostatsis, inflammation, and repair at single cell granularity. We confirm that cell origin is the major determinant of AM programing and describe two previously uncharacterized, transcriptionally distinct subdivisions of AMs based on proliferative capacity and inflammatory programing. Overall design: We stimulated mice with LPS and then sampled FACs sorted airway macrophage cells using BAL at Days 0, 3, and 6 and sequenced 1,134 cells from these three groups using RNA-seq
Single cell RNA sequencing identifies unique inflammatory airspace macrophage subsets.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic Cell Identities during Lineage Priming.
Specimen part
View SamplesEpiblast cells in the early post-implantation stage mammalian embryo undergo a transition described as lineage priming before cell fate allocation, but signaling pathways acting upstream remain ill defined. Genetic studies demonstrate that Smad2/3 double-mutant mouse embryos die shortly after implantation. To learn more about the molecular disturbances underlying this abrupt failure, here we characterised Smad2/3-deificient embryonic stem cells (ESCs). We found that Smad2/3 double-knockout ESCs induced to form epiblast-like cells (EpiLCs) display changes in nave and primed pluripotency marker gene expression, associated with the disruption of Oct4-bound distal regulatory element. In the absence of Smad2/3, we observed enhanced Bmp target gene expression and de-repression of extra-embryonic gene expression. Cell fate allocation into all three embryonic germ lakers is disrupted. Collectively, these experiments demonstrate that combinatorial Smad2/3 functional activities are required to maintain distinct embryonic and/or extra-embryonic cell identity during lineage priming in the epiblast before gastrulation.
Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic Cell Identities during Lineage Priming.
Specimen part
View Samples