Mice knocked-out or wild type for the NAPE PLD gene specifically in adipose tissue, were recruited for this expression profiling experiment. Each group of mice (WT versus cKO) were fed with a control diet or a high fat diet. Then mice were sacrificed and adipose tissue samples form the subcutaneous adipose tissue were processed for RNA extraction. Total RNA of each sample was then pooled with those of the same group and treatment for microarray hybridization.
Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota.
Age, Specimen part
View SamplesIn the present study, we investigated the consequences of n-3 polyunsaturated fatty acids (PUFA) depletion on hepatic lipid metabolism in mice fed during three months with a diet presenting a high n-6/n-3 PUFA ratio to induce n-3 PUFA depletion. Microarray analyses were performed to identify the molecular targets involved in the development of hepatic steatosis associated with n-3 PUFA depletion.
Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice: genomic analysis of cellular targets.
Sex, Specimen part, Treatment
View SamplesWe compared 22 primary Pca (hormone-dependent) versus 29 metastatic Pca (CRPC). The expression of genes related to cell cycle, proliferation, DNA synthesis, and androgen metablism are significantly increased in CRPC group. The expression of AR-stimulated genes were partially reactivated.
ERG induces androgen receptor-mediated regulation of SOX9 in prostate cancer.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comparing Platforms for Messenger RNA Expression Profiling of Archival Formalin-Fixed, Paraffin-Embedded Tissues.
Specimen part, Disease
View SamplesTo study feasibility of gene expression profiling from FFPE tissues using NuGen amplified mRNA hybridized on Affymetrix GeneChip Human Gene 1.0 ST arrays, we designed a pilot study utilizing samples from prostate cancer cohort. We selected samples from large-scale epidemiologic studies and clinical trials representative of a wide variety of fixation times, block ages and block storage conditions.
Comparing Platforms for Messenger RNA Expression Profiling of Archival Formalin-Fixed, Paraffin-Embedded Tissues.
Specimen part
View SamplesTo study feasibility of gene expression profiling from FFPE tissues using NuGen amplified mRNA hybridized on Affymetrix GeneChip Human Gene 1.0 ST arrays, we designed a pilot study utilizing samples from prostate cancer cohort. We selected samples from large-scale epidemiologic studies and clinical trials representative of a wide variety of fixation times, block ages and block storage conditions.
Comparing Platforms for Messenger RNA Expression Profiling of Archival Formalin-Fixed, Paraffin-Embedded Tissues.
Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients.
Specimen part, Cell line, Treatment
View SamplesChromosomal rearrangements involving ETS factors, ERG and ETV1, occur frequently in prostate cancer. We here examine human prostate cancer cells control VCaP and LNCaP cells with ERG- or ETV1-silenced VCaP or LNCaP cells, respectively, in hormone deprived and stimulated conditions.
ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients.
Specimen part, Cell line, Treatment
View SamplesChromosomal rearrangements involving ETS factors, ERG and ETV1, occur frequently in prostate cancer. We here examine human prostate non-tumorigenic RWPE-1 cells with ERG- or ETV1-expressing stable RWPE-1 cell.
ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients.
Specimen part, Cell line
View SamplesChromosomal rearrangements involving ETS factors, ERG and ETV1, occur frequently in prostate cancer. We here examine mouse prostate cells from WT mice with s with T-ETV1 mice, which contains express the truncated human ETV1 under the endogenous Tmprss2 promoter. ETV1 expression can be tracked by GFP expression.
ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients.
Specimen part
View Samples