Metastasis via the lymphatics is a major risk factor in squamous cell carcinoma of the oral cavity (OSCC). We sought to determine whether the presence of metastasis in the regional lymph node could be predicted by a gene expression signature of the primary tumor. A total of 18 OSCCs were characterized for gene expression by hybridizing RNA to Affymetrix U133A gene chips. Genes with differential expression were identified using a permutation technique and verified by quantitative RT-PCR and immunohistochemistry. A predictive rule was built using a support vector machine, and the accuracy of the rule was evaluated using crossvalidation on the original data set and prediction of an independent set of four patients. Metastatic primary tumors could be differentiated from nonmetastatic primary tumors by a signature gene set of 116 genes. This signature gene set correctly predicted the four independent patients as well as associating five lymph node metastases from the original patient set with the metastatic primary tumor group. We concluded that lymph node metastasis could be predicted by gene expression profiles of primary oral cavity squamous cell carcinomas. The presence of a gene expression signature for lymph node metastasis indicates that clinical testing to assess risk for lymph node metastasis should be possible.
Gene expression signature predicts lymphatic metastasis in squamous cell carcinoma of the oral cavity.
No sample metadata fields
View SamplesThe aim of this analysis was to investigate the changes in the gene expression pattern of ex vivo cultured wildtype murine osteoclasts during the course of osteoclastogenic differentiation.
The Lysosomal Protein Arylsulfatase B Is a Key Enzyme Involved in Skeletal Turnover.
Sex, Specimen part
View SamplesThis study uses whole-transcriptome sequencing to characterize the transcriptomes of the AOM/DSS mouse model. In this model, mice are treated with dextran sodium sulfate (DSS) to induce colitis. When this treatment is preceded by injections of the weak carcinogen azoxymethane (AOM) the mice develop intestinal tumors. Our results identify sets of differentially expressed genes which are correlated with methylation changes of the corresponding genes. Overall design: Whole transcriptome analysis of Mus musculus. Three conditions were sequenced and analyzed, the first is an untreated control, the second corresponds to inflammation induced by applying DSS, the third to cancer induced by inflammation and application of AOM. The control condition as well as the AOM-induced cancer condition were analyzed using three replicates, the second condition using 4 replicates.
Chronic inflammation induces a novel epigenetic program that is conserved in intestinal adenomas and in colorectal cancer.
No sample metadata fields
View SamplesSystemic administration of -adrenoceptor (-AR) agonists has been found to induce skeletal muscle hypertrophy and significant metabolic changes. In the context of energy homeostasis, the importance of -AR signaling has been highlighted by the inability of 13-AR-deficient mice to regulate energy expenditure and susceptibility to diet induced obesity. However, the molecular pathways and gene expression changes that initiate and maintain these phenotypic modulations are poorly understood. Therefore, the aim of this study was to identify differential changes in gene expression in murine skeletal muscle associated with systemic acute administration of the 2-AR agonist formoterol. Skeletal muscle gene expression (from murine tibialis anterior) was profiled at both 1 and 4 hours following systemic administration of the 2-AR agonist formoterol, using 46K Illumina(R) Sentrix BeadArrays. Illumina expression profiling revealed significant expression changes in genes associated with skeletal muscle hypertrophy, myoblast differentiation, metabolism, circadian rhythm, transcription, histones, and oxidative stress.
Expression profiling of skeletal muscle following acute and chronic beta2-adrenergic stimulation: implications for hypertrophy, metabolism and circadian rhythm.
Treatment
View SamplesGut dysbiosis and host genetics are implicated as causative factors in inflammatory bowel disease, yet mechanistic insights are lacking. Longitudinal analysis of ulcerative colitis patients following total colectomy with ileal anal anastomosis (IPAA) where >50% develop pouchitis, offers a unique setting to examine cause vs. effect. To recapitulate human IPAA, we employed a mouse model of surgically-created blind self-filling (SFL) and self-emptying (SEL) ileal loops. SFL exhibit fecal stasis due to directional peristalsis motility oriented towards away from the loop end, whereas SEL remain empty. In wild type mice, SFL, but not SEL, develop pouch-like microbial communities without accompanying active inflammation. However, in genetically susceptible IL-10-/- deficient mice, SFL, but not SEL, exhibit severe inflammation and mucosal transcriptomes resembling human pouchitis. Germ-free IL10-/- mice conventionalized with wild type SFL, but not SEL, microbiota, develop severe colitis. These data demonstrate an essential role for fecal stasis, gut dysbiosis, and genetic susceptibility and offer insights into human pouchitis and ulcerative colitis.
Insights into the pathogenesis of ulcerative colitis from a murine model of stasis-induced dysbiosis, colonic metaplasia, and genetic susceptibility.
Specimen part
View SamplesExploring the novel role of RORC (RORgamma) in breast cancer, utilizing NEXTseq with genetic gain and loss of function and pharmacological treatment. Overall design: For loss of function, control-siRNA or RORC-siRNA was transfected for 48h in three cell lines (MCF-7, T-47D and MDA-MB-231). For gain of function, CMV-empty or CMV-RORC was transfected for 48h in MDA-MB-231 cells. Furthermore, the selective RORC antagonist, SR2211 was utilized. MCF-7 cells were treated either DMSO or SR2211 (5uM) for 24h. Total RNA was extracted with the RNeasy kit. NEXTseq was performed for transcriptome analysis.
The Nuclear Receptor, RORγ, Regulates Pathways Necessary for Breast Cancer Metastasis.
No sample metadata fields
View SamplesDiet-induced obesity (DIO) is rapidly becoming a global health problem, particularly as Westernization of emerging nations continues. Currently, one third of adult Americans are considered obese and, if current trends continue, >90% of US citizens are predicted to be affected by 2050. However, efforts to fight this epidemic have not yet produced sound solutions for prevention or treatment. Our studies reveal a balanced and chronobiological relationship between food consumption, daily variation in gut microbial evenness and function, basomedial hypothalamic circadian clock (CC) gene expression, and key hepatic metabolic regulatory networks , including CC and nuclear receptors (NR), that is are essential for metabolic homeostasis. Western diets high in saturated fats dramatically alter diurnal variation in microbial composition and function, which in turn lead to uncoupling of the hepatic CC and NR networks from central CC control in ways that offset the timing and types of regulatory factors directing metabolic function. These signals include microbial metabolites such as short chain fatty acids (SCFAs) and hydrogen sulfide (H2S) that can directly regulate or disrupt metabolic networks of the hepatocyte. Our study therefore provides insights into the complex and dynamic relationships between diet, gut microbes, and the host that are critical for maintenance of health. Perturbations of this constellation of processes, in this case by diet-induced dysbiosis and its metabolomic signaling, can potentially promote metabolic imbalances and disease. This knowledge opens up many possibilities for novel therapeutic and interventional strategies to treat and prevent DIO, ranging from the manipulation of gut microbial function to pharmacological targeting of host pathways to restore metabolic balance.
Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism.
Specimen part
View SamplesLgr6-positive cells have been shown to label stem/progenitors cells in several tissues including tongue and skin. However their role in mammary gland has never been investigated. Here we used Lgr6-eGFP-IRES-CreER2 mice to isolate and characterize Lgr6-positive population in mammary gland of 5-week old female mice. Overall design: Examination of transcriptional differences between Lgr6 positive and negative cells
Lgr6 labels a rare population of mammary gland progenitor cells that are able to originate luminal mammary tumours.
Sex, Specimen part, Subject
View SamplesDifferent osteoprogenitors (SSC, BCSP, Thy+) were sorted after 2 days of JUN induction, followed by RNA extraction and microarray analysis
Expansion of Bone Precursors through Jun as a Novel Treatment for Osteoporosis-Associated Fractures.
Specimen part
View SamplesMolecular profiling of tumors has proven a valuable tool for identification of prognostic and diagnostic subgroups in medulloblastomas, glioblastomas and other cancers. However, the molecular landscape of atypical teratoid / rhabdoid tumors (AT/RTs) remains largely unexplored. To address this issue, we used microarrays to measure the gene expression profiles of 18 AT/RTs, and performed unsupervised hierarchical clustering to determine molecularly similar subgroups. Four major subgroups (clusters) were identified. These did not conform to gender, tumor location, or presence of monosomy 22. Clusters showed distinct gene signatures and differences in enriched biological processes, including elevated expression of choroid plexus genes in Cluster 4. In addition, survival differed significantly by cluster, with shortest survival (mean 4.7 months) in both Clusters 3 and 4 compared to Clusters 1 and 2 (mean 28.1 months). Analysis showed that multiple bone morphogenetic protein (BMP) pathway genes were up-regulated in the short survival clusters, with BMP4 showing the most significant up-regulation (270-fold). Thus, high expression of BMP pathway genes was negatively associated with survival in this dataset. Our study indicates that molecular subgroups exist within AT/RTs, and that molecular profiling of these comparatively rare tumors may be of diagnostic, prognostic and therapeutic value.
High expression of BMP pathway genes distinguishes a subset of atypical teratoid/rhabdoid tumors associated with shorter survival.
Sex, Specimen part
View Samples