refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 101 results
Sort by

Filters

Technology

Platform

accession-icon GSE93406
Reseveratrol and Rosiglitazone regulation of red tibialis anterior (red TA) gene expression in ZDF rats
  • organism-icon Rattus norvegicus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.1 ST Array (ragene21st)

Description

The goal of this work was to examine if reserveratrol or rosiglitazone treatment could improve the metabolic status of obese male ZDF rats after 6 weeks. Gene expression was analyzed in several key metabolic tissues, including liver, various white adipose tissue depots, red tibalus muscle, and peripheral blood mononuclear cells.

Publication Title

Two-way learning with one-way supervision for gene expression data.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE93403
Reseveratrol and Rosiglitazone regulation of liver gene expression in ZDF rats
  • organism-icon Rattus norvegicus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.1 ST Array (ragene21st)

Description

The goal of this work was to examine if reserveratrol or rosiglitazone treatment could improve the metabolic status of obese male ZDF rats after 6 weeks. Gene expression was analyzed in several key metabolic tissues, including liver, various white adipose tissue depots, red tibalus muscle, and peripheral blood mononuclear cells.

Publication Title

Two-way learning with one-way supervision for gene expression data.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE93402
Reseveratrol and Rosiglitazone regulation of blood gene expression in ZDF rats
  • organism-icon Rattus norvegicus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.1 ST Array (ragene21st)

Description

The goal of this work was to examine if reserveratrol or rosiglitazone treatment could improve the metabolic status of obese male ZDF rats after 6 weeks. Gene expression was analyzed in several key metabolic tissues, including liver, various white adipose tissue depots, red tibalus muscle, and whole blood.

Publication Title

Two-way learning with one-way supervision for gene expression data.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE51905
Expression data from differentiated 3T3-L1 pre-adipocytes.
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme catalyzing the conversion of saturated fatty acids palmitate and stearate to monounsaturated fatty acids palmitoleate and oleate. During adipocyte differentiation, SCD expression increases concomitantly with several transcription factors and lipogenic genes.

Publication Title

Inhibition of stearoyl-CoA desaturase-1 in differentiating 3T3-L1 preadipocytes upregulates elongase 6 and downregulates genes affecting triacylglycerol synthesis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE104567
Expression data from tibialis anterior muscle of rats fed different fatty acid enriched diets
  • organism-icon Rattus norvegicus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.1 ST Array (ragene21st)

Description

Omega-3 and omega-6 polyunsaturated fatty acids (PUFA) have important signalling roles in the body. The goal of this study was to investigate the impact of linoleic acid (LA, omega-6) and alpha-linolenic (ALA, omega-3) on global skeletal muscle gene expression. We were also interested to study the impact of these fatty acids on myokine expression.

Publication Title

Alpha-linolenic acid and linoleic acid differentially regulate the skeletal muscle secretome of obese Zucker rats.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE42220
Gene expression data from differentiated 3T3-L1 preadipocytes treated with Palmitic Acid, Stearic Acid, Palmitoleic Acid, or Oleic Acid
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Saturated fatty acids (SFA) are widely thought to induce inflammation in adipose tissue (AT), while monounsaturated fatty acids (MUFA) are purported to have the opposite effect; however, it is unclear if individual SFA and MUFA behave similarly. Our goal was to examine adipocyte transcriptional networks regulated by individual SFA (palmitic acid, PA; stearic acid, SA) and MUFA (palmitoleic acid, PMA; oleic acid, OA).

Publication Title

Individual saturated and monounsaturated fatty acids trigger distinct transcriptional networks in differentiated 3T3-L1 preadipocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55200
Gene expression data from human subcutaneous adipose tissue
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Obesity is a heterogeneous conditions comprising obese individuals with metabolic disorders (termed metabolically unhealthy obese; MUO) and obese individuals who are metabolically healthy (termed metabolically healthy obese; MHO).

Publication Title

Serum and adipose tissue amino acid homeostasis in the metabolically healthy obese.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP148856
Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells (RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

The development of CRISPR-Cas systems for targeting DNA and RNA in diverse organisms has transformed biotechnology and biological research. Moreover, the CRISPR revolution has highlighted bacterial adaptive immune systems as a rich and largely unexplored frontier for discovery of new genome engineering technologies. In particular, the class 2 CRISPR-Cas systems, which use single RNA-guided DNA-targeting nucleases such as Cas9, have been widely applied for targeting DNA sequences in eukaryotic genomes. Here, we report DNA-targeting and transcriptional control with class I CRISPR-Cas systems. Specifically, we repurpose the effector complex from type I variants of class 1 CRISPR-Cas systems, the most prevalent CRISPR loci in nature, that target DNA via a multi-component RNA-guided complex termed Cascade. We validate Cascade expression, complex formation, and nuclear localization in human cells and demonstrate programmable CRISPR RNA (crRNA)-mediated targeting of specific loci in the human genome. By tethering transactivation domains to Cascade, we modulate the expression of targeted chromosomal genes in both human cells and plants. This study expands the toolbox for engineering eukaryotic genomes and establishes Cascade as a novel CRISPR-based technology for targeted eukaryotic gene regulation. Overall design: Examination of transcriptome-wide changes in gene expression with Cascade-mediated activation of endogenous genes.

Publication Title

Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE38742
Modeling tumor subtypes in vivo using lineage restricted transgenic shRNA
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Expression analysis from two genetically engineered mouse models of osteosarcoma determine the expression profile of mouse osteosarcoma Human osteosarcoma (OS) is comprised of three different subtypes: fibroblastic, chondroblastic and osteoblastic. We previously generated a mouse model of fibroblastic OS by conditional deletion of p53 and Rb in osteoblasts. Here we report an accurate mouse model of the osteoblastic subtype using shRNA-based suppression of p53. Like human OS, tumors frequently present in the long bones and preferentially disseminate to the lungs; features less consistently modeled using Cre:lox approaches. Our approach allowed direct comparison of the in vivo consequences of targeting the same genetic drivers using different technology. This demonstrated that the effects of Cre:lox and shRNA mediated knock-down are qualitatively different, at least in the context of osteosarcoma. Through the use of complementary genetic modification strategies we have established a model of a distinct clinical subtype of OS that was not previously represented and more fully recapitulated the clinical spectrum of this human tumor.

Publication Title

Modeling distinct osteosarcoma subtypes in vivo using Cre:lox and lineage-restricted transgenic shRNA.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP032818
Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) diminishes the nuclear transcriptional response associated with mtDNA damage. Overall design: Six samples were analyzed to determine message RNA levels.

Publication Title

Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact