Innate immunity is fundamental to recognition and clearance of bacterial infection. The relevant cells and molecules that orchestrate an effective response, however, remain incompletely understood. Here we describe a previously unknown population of B cells, which we have named innate response activator (IRA) B cells that recognize bacteria directly through TLR-4-MyD88 and protect against polymicrobial sepsis.
Innate response activator B cells protect against microbial sepsis.
Sex, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Programming human pluripotent stem cells into white and brown adipocytes.
Specimen part, Disease
View SamplesThe utility of human pluripotent stem cells as a tool for understanding disease and as a renewable source of cells for transplantation therapies is dependent on efficient differentiation protocols that convert these cells into relevant adult cell types. Here we report the robust and efficient differentiation of human pluripotent stem cells into adipocytes. We found that inducible expression of PPARG2 in pluripotent stem cell-derived mesenchymal progenitor cells programmed their development towards an adipocyte cell fate. Using this approach, multiple human pluripotent cell lines were differentiated into adipocytes with efficiencies of 85% to 90%. These pluripotent stem cell-derived adipocytes retained their identity independent of transgene expression, could be maintained in culture for several weeks, expressed mature markers, and exhibited mature functional properties such as lipid catabolism in response to a beta-adrenergic stimulus. Global transcriptional and lipid metabolomic analyses further confirmed the identity and maturity of these pluripotent stem cell-derived adipocytes.
Programming human pluripotent stem cells into white and brown adipocytes.
Specimen part
View SamplesComparative analysis of FACS-sorted CCR2- and CCR2+ HSC in the steady state. CCR2+ HSC have fourfold higher proliferative rates than CCR2- HSC, are are biased towards the myeloid lineage and dominate the migratory HSC population.
Myocardial Infarction Activates CCR2(+) Hematopoietic Stem and Progenitor Cells.
Specimen part
View SamplesIron is an essential component of the erythrocyte protein hemoglobin and is crucial to oxygen transport in vertebrates. In the steady state, erythrocyte production is in equilibrium with erythrocyte removal1. In various pathophysiological conditions, erythrocyte life span is severely compromised, which threatens the organism with anemia and iron toxicity 2,3. Here we identify anon-demand mechanism specific to the liver that clears erythrocytes and recycles iron. We showthat Ly-6Chigh monocytes ingest stressed and senescent erythrocytes, accumulate in the liver, and differentiate to ferroportin 1 (FPN1)-expressing macrophages that can deliver iron to hepatocytes. Monocyte-derived FPN1+ Tim-4neg macrophages are transient, reside alongside embryonically-derived Tim-4high Kuppfer cells, and depend on Csf1 and Nrf2. The spleenlikewise recruits iron-loaded Ly-6Chigh monocytes, but they do not differentiate into ironrecycling macrophages due to the suppressive action of Csf2, and are instead shuttled to the livervia coordinated chemotactic cues. Inhibiting this mechanism by preventing monocyte recruitment to the liver leads to kidney failure and liver damage. These observations identify the liver as the primary organ supporting emergency erythrocyte removal and iron recycling, and uncover a mechanism by which the body adapts to fluctuations in erythrocyte integrity.
On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver.
Specimen part
View SamplesRNAseq (3''DGE) profiles of osteoblasts from four lung cancer-bearing mice and three tumor-free mice. Overall design: Osteoblasts were FACS-sorted using the following markers: CD45-CD31-Terr119-GFP+ from lineage depleted bone and bone marrow tissue of lung tumor-bearing or tumor-free age-, sex- and litter-matched KrasLSL-G12D/WT;p53Flox/Flox (KP)-Ocn GFP mice. Total RNA was prepared using the Trizol method followed cDNA preparation, amplification, Illumina adapter ligation and 3''end sequencing by Illumina HiSeq 2500
Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF<sup>high</sup> neutrophils.
Sex, Age, Specimen part, Subject
View SamplesAs exposure to episodic drought can impinge significantly on forest health and the establishment of productive tree plantations, there is great interest in understanding the mechanisms of drought response in trees. The ecologically dominant and economically important genus Populus, with its sequenced genome, provides an ideal opportunity to examine transcriptome level changes in trees in response to a drought stimulus. The transcriptome level drought response of two commercially important hybrid Populus clones (P. deltoides P. nigra, DN34, and P. nigra P. maximowiczii, NM6) was characterized over a diurnal period using a 4 2 2 completely randomized factorial ANOVA experimental design (four time points, two genotypes, and two treatment conditions) using Affymetrix Poplar GeneChip microarrays. Notably, the specific genes that exhibited changes in transcript abundance in response to drought differed between the genotypes and/or the time of day that they exhibited their greatest differences. This study emphasizes the fact that it is not possible to draw simple, generalized conclusions about the drought response of the genus Populus on the basis of one species, nor on the basis of results collected at a single time point. The data derived from our studies provide insights into the variety of genetic mechanisms underpinning the Populus drought response, and provide candidates for future experiments aimed at understanding this response across this economically and ecologically important genus.
Genotype and time of day shape the Populus drought response.
Age, Specimen part, Treatment
View SamplesTo screen for specific circadian outputs that may distinguish the pacemaker in the mammalian suprachiasmatic nucleus (SCN) from peripheral-type oscillators in which the canonical clockworks are similarly regulated in a circadian manner, the rhythmic behavior of the transcriptome in forskolin-stimulated NIH/3T3 fibroblasts was analyzed and compared to that found in the rat SCN in vivo and SCN2.2 cells in vitro. Similar to the scope of circadian gene expression in SCN2.2 cells and the rat SCN, NIH/3T3 fibroblasts exhibited circadian fluctuations in the expression of the core clock genes, Per2, Bmal1 (Mop3), and Cry1 and 323 functionally diverse transcripts (2.6%), many of which were involved in cell communication. Overlap in rhythmically-expressed transcripts among NIH/3T3 fibroblasts, SCN2.2 cells and the rat SCN was limited to these clock genes and four other genes that mediate fatty acid and lipid metabolism or function as nuclear factors. Compared to NIH/3T3 cells, circadian gene expression in SCN oscillators was more prevalent among cellular pathways mediating glucose metabolism and neurotransmission. Coupled with evidence for the rhythmic regulation of the inducible isoform of nitric oxide synthase, the enzyme responsible for the production of nitric oxide, in SCN2.2 cells and the rat SCN but not in fibroblasts, studies examining the effects of a NOS inhibitor on metabolic rhythms in co-cultures containing SCN2.2 cells and untreated NIH/3T3 cells suggest that this gaseous neurotransmitter may play a key role in SCN pacemaker function. Thus, this comparative analysis of circadian gene expression in SCN and non-SCN cells may have important implications in the selective identification of circadian signals involved in the coupling of SCN oscillators and the regulation of rhythmicity in downstream cells or tissues.
Circadian profiling of the transcriptome in NIH/3T3 fibroblasts: comparison with rhythmic gene expression in SCN2.2 cells and the rat SCN.
No sample metadata fields
View SamplesThe capacity of embryonic stem cells to differentiate into all lineages of mature organism is precisely regulated by cellular signaling factors. STAT3 is a crucial transcription factor that plays a central role in maintaining embryonic stem cells identity. However the underlying mechanism how Stat3 directs differentiation is still not completely understood. Here we show that Stat3 positively regulates gene expression of methyltransferase like protein 8 (Mettl8) in mouse ES cells. We found that Mettl8 is dispensable for pluripotency but affects ESCs differentiation. Subsequently we discovered that Mettl8 interacts with Mapkbp1's mRNA, which is an intermediate factor in JNK signaling, and inhibits the translation of the mRNA. Thereby, Mettl8 prohibits the activation of JNK signaling and enhances the differentiation of mouse ESCs. Collectively, our study uncovers a Stat3 target Mettl8 which regulates mouse ESCs differentiation via JNK signaling. Overall design: mRNA profiles of E14 cells transfected with scramble siRNA or Mettl8 siRNA were generated by deep sequencing, in triplicate, using Illumina GAIIx.
The STAT3 Target Mettl8 Regulates Mouse ESC Differentiation via Inhibiting the JNK Pathway.
Specimen part, Cell line, Subject
View SamplesThe use of radiation treatment has increased for both sporadic and neurofibromatosis type 2 (NF2)-associated vestibular schwannoma (VS). However, there are a subset of radioresistant tumors and systemic treatments that are seldom used in these patients. We investigated molecular alterations after radiation in three NF2-associated and five sporadically operated recurrent VS after primary irradiation. We compared these findings with 49 non-irradiated (36 sporadic and 13 NF2-associated) VS through gene-expression profiling and pathway analysis. Furthermore, we stained the key molecules of the distinct pathway by immunohistochemistry. A total of 195 differentially expressed genes in sporadic and NF2-related comparisons showed significant differences based on the criteria of p value < 0.05 and a two-fold change. These genes were involved in pathways that are known to be altered upon irradiation (e.g., mammalian target of rapamycin (mTOR), phosphatase and tensin homolog (PTEN) and vascular endothelial growth factor (VEGF) signaling). We observed a combined downregulation of PTEN signaling and an upregulation of mTOR signaling in progressive NF2-associated VS after irradiation. Immunostainings with mTOR and PTEN antibodies confirmed the respective molecular alterations. Taken together, mTOR inhibition might be a promising therapeutic strategy in NF2-associated VS progress after irradiation.
Contribution of mTOR and PTEN to Radioresistance in Sporadic and NF2-Associated Vestibular Schwannomas: A Microarray and Pathway Analysis.
Specimen part, Disease
View Samples