Our previous study using nude rats revealed that the parental JDCaP xenografts predominantly expressed full-length androgen receptor (AR) whereas the relapsed JDCaP xenografts after castration acquired AR splice variants including AR-V7 and ARv567es. To understand molecular mechanisms underlying the acquisition of AR splice variants in the JDCaP model, we performed microarray analysis using RNA samples of the xenografts without castration (Parent), the relapsed xenografts overexpressing full-length AR and AR-V7 (ARhiV7hi), and the relapsed xenografts expressing ARv567es (ARv567es).
The RNA helicase DDX39B and its paralog DDX39A regulate androgen receptor splice variant AR-V7 generation.
Specimen part
View SamplesTo delineate the mechanism by which human mitochondrial transcriptional factor A (hTFAM) suppresses AD pathology in the neuron model of AD, we first performed microarray analyses using using RNAs prepared from PS1P117L and wild-type neurons. Next, we performed microarray analyses using PS1P117L neurons with or without recombinant hTFAM protein treatment.
Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer's disease.
Specimen part
View SamplesTo delineate the mechanism by which hTFAM suppresses AD pathology in the neuron model of AD, we first performed microarray analyses using using RNAs prepared from PS1P117L and wild-type neurons. Next, we performed microarray analyses using PS1P117L neurons with or without recombinant hTFAM protein treatment.
Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer's disease.
Specimen part, Treatment
View SamplesTo delineate the mechanism underlying the amelioration of AD pathophysiology by hTFAM, we performed gene expression profiling using hippocampal RNAs from the AD model mouse and AD model mouse overexpressing human TFAM.
Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer's disease.
Sex, Age, Specimen part
View SamplesThe Fosb gene encodes subunits of the activator protein-1 transcription factor complex. Two mature mRNAs, Fosb and Fosb, encoding full-length FOSB and FOSB proteins respectively, are formed by alternative splicing of Fosb mRNA. Fosb products are expressed in several brain regions. Moreover, Fosb-null mice exhibit depressive-like behaviors and adult-onset spontaneous epilepsy, demonstrating important roles in neurological and psychiatric disorders. Study of Fosb products has focused almost exclusively on neurons; their function in glial cells remains to be explored. In this study, we found that microglia express equivalent levels of Fosb and Fosb mRNAs to hippocampal neurons and, using microarray analysis, we identified six microglial genes whose expression is dependent on Fosb products. Of these genes, we focused on C5ar1 and C5ar2, which encode receptors for complement C5a. In isolated Fosb-null microglia, chemotactic responsiveness toward the truncated form of C5a was significantly lower than that in wild-type cells. Fosb-null mice were significantly resistant to kainate-induced seizures compared with wild-type mice. C5ar1 mRNA levels and C5aR1 immunoreactivity were increased in wild-type hippocampus 24 hours after kainate administration; however, such induction was significantly reduced in Fosb-null hippocampus. Furthermore, microglial activation after kainate administration was significantly diminished in Fosb-null hippocampus, as shown by significant reductions in CD68 immunoreactivity, morphological change and reduced levels of Il6 and Tnf mRNAs, although no change in the number of Iba-1-positive cells was observed. These findings demonstrate that, under excitotoxicity, Fosb products contribute to a neuroinflammatory response in the hippocampus through regulation of microglial C5ar1 and C5ar2 expression.
Fosb gene products contribute to excitotoxic microglial activation by regulating the expression of complement C5a receptors in microglia.
No sample metadata fields
View SamplesGlobal DNA hypomethylation and DNA hypermethylation of promoter regionsincluding tumor suppressor genesare frequently detected in human cancers. Although many studies have suggested a contribution to carcinogenesis, it is still unclear whether the aberrant DNA hypomethylation observed in tumors is a consequence or a cause of cancer. We found that overexpression of Stella (also known as PGC7, Dppa3), a maternal factor required for the maintenance of DNA methylation in early embryos, induced global DNA hypomethylation and transformation in NIH3T3 cells. This hypomethylation was due to the binding of Stella to Np95 (also known as Uhrf1, ICBP90) and the subsequent impairment of Dnmt1 localization. In addition, enforced expression of Stella enhanced the metastatic ability of B16 melanoma cells through the induction of metastasis-related genes by inducing DNA hypomethylation of their promoter regions. Such DNA hypomethylation itself causes cellular transformation and metastatic ability. These data provide new insight into the function of global DNA hypomethylation in carcinogenesis.
Global DNA hypomethylation coupled to cellular transformation and metastatic ability.
Cell line
View SamplesTo examine fosB regulation of neurogenesis, depression and epilepsy, we compared the gene expression profiles of wild type, fosBd/d and fosB-null mice by microarray analysis.
fosB-null mice display impaired adult hippocampal neurogenesis and spontaneous epilepsy with depressive behavior.
Sex, Age, Specimen part, Treatment
View SamplesTo identify molecular pathological alterations in AD brains, we performed interspecies comparative microarray analyses using RNAs prepared from postmortem human brain tissues donated for the Hisayama study and hippocampal RNAs from the triple-transgenic mouse model of AD (3xTg-AD)
Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study.
Sex, Age, Specimen part
View SamplesTo identify molecular pathological alterations in AD brains, we performed interspecies comparative microarray analyses using RNAs prepared from postmortem human brain tissues donated for the Hisayama study and hippocampal RNAs from the triple-transgenic mouse model of AD (3xTg-AD)
Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study.
Sex, Age, Specimen part
View SamplesMice with MUTYH-null allele (Mutyh+/-, Mutyh-/-) were fed a high-fat/high-cholesterol (HFHC) diet or HFHC + high iron diet. The incidence of liver tumors and histological features of the liver were compared.
MUTYH is associated with hepatocarcinogenesis in a non-alcoholic steatohepatitis mouse model.
Specimen part, Disease, Treatment
View Samples