Our previous study using nude rats revealed that the parental JDCaP xenografts predominantly expressed full-length androgen receptor (AR) whereas the relapsed JDCaP xenografts after castration acquired AR splice variants including AR-V7 and ARv567es. To understand molecular mechanisms underlying the acquisition of AR splice variants in the JDCaP model, we performed microarray analysis using RNA samples of the xenografts without castration (Parent), the relapsed xenografts overexpressing full-length AR and AR-V7 (ARhiV7hi), and the relapsed xenografts expressing ARv567es (ARv567es).
The RNA helicase DDX39B and its paralog DDX39A regulate androgen receptor splice variant AR-V7 generation.
Specimen part
View SamplesGlobal DNA hypomethylation and DNA hypermethylation of promoter regionsincluding tumor suppressor genesare frequently detected in human cancers. Although many studies have suggested a contribution to carcinogenesis, it is still unclear whether the aberrant DNA hypomethylation observed in tumors is a consequence or a cause of cancer. We found that overexpression of Stella (also known as PGC7, Dppa3), a maternal factor required for the maintenance of DNA methylation in early embryos, induced global DNA hypomethylation and transformation in NIH3T3 cells. This hypomethylation was due to the binding of Stella to Np95 (also known as Uhrf1, ICBP90) and the subsequent impairment of Dnmt1 localization. In addition, enforced expression of Stella enhanced the metastatic ability of B16 melanoma cells through the induction of metastasis-related genes by inducing DNA hypomethylation of their promoter regions. Such DNA hypomethylation itself causes cellular transformation and metastatic ability. These data provide new insight into the function of global DNA hypomethylation in carcinogenesis.
Global DNA hypomethylation coupled to cellular transformation and metastatic ability.
Cell line
View SamplesAtrial specific knockout of Nkx2-5 results in hyperplastic atria with ASD and conduction defects. To examine how Nkx2-5 regulates cardiac proliferation at late gestational stages, RNA-seq was performed. Overall design: Examination of expression profile of 2 Nkx2-5-null atria and 3 controls
Nkx2-5 suppresses the proliferation of atrial myocytes and conduction system.
No sample metadata fields
View SamplesNCCs and NCC-derived MSCs were induced from FOP-iPSCs and control iPSCs, and their expresion profiles were compared.
Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media.
Specimen part
View SamplesWe developed simple, robust, efficient, and serum-free/feeder-free induction protocol for neural crest cells from human pluripotent stem cells. To characterize the hNCCs and hNCC-derived MSCs, we performed gene expression profiling experiments.
Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media.
Specimen part
View SamplesEVI1 is one of the famous poor prognostic markers for a chemotherapy-resistant acute myeloid leukemia (AML). To identify molecular targets on the surface of leukemia cells with EVI1high expression, we compared the gene expression profiles of several AML cell lines by DNA microarray
CD52 as a molecular target for immunotherapy to treat acute myeloid leukemia with high EVI1 expression.
Cell line
View SamplesSeckel syndrome (SS) is a rare spectrum of congenital severe microcephaly and dwarfism. One SS-causative gene is Ataxia Telangiectasia and Rad3-Related Protein (ATR), and ATR (c.2101 A>G) mutation causes skipping of exon 9, resulting in a hypomorphic ATR defect in patients. Because ATR governs DNA repair response, the mutation has been considered the cause of an impaired response to DNA replication stress in neuronal progenitor cells (NPCs), which is associated with the pathogenesis of microcephaly. However, the precise mechanism through which the mutation causes SS remains unclear. To address this issue, we established induced pluripotent stem cells (iPSCs) from fibroblasts carrying the ATR mutation and an isogenic ATR-corrected counterpart iPSC clone by genome editing. Interestingly, SS-patient-derived iPSCs (SS-iPSCs) exhibited cell type-specific splicing; exon 9 was dominantly skipped in fibroblasts and iPSC-derived NPCs, but it was included in undifferentiated iPSCs and definitive endodermal cells. SS-iPSC-derived NPCs (SS-NPCs) showed distinct expression profiles from ATR non-mutated NPCs. In SS-NPCs, abnormal mitotic spindles were observed more frequently than in gene-corrected counterparts, and the alignment of NPCs in the surface of the neurospheres was perturbed. Finally, we tested several splicing-modifying compounds and found that a CLK1 inhibitor, TG003, could pharmacologically rescue the exon 9 skipping in SS-NPCs. Furthermore, treatment with TG003 restored the function of ATR in SS-NPCs and decreased the frequency of abnormal mitotic events. In conclusion, our iPSC model of SS revealed a novel function of the ATR mutation in NPCs and NPC-specific missplicing, proving its usefulness for dissecting the pathophysiology of ATR-SS. Overall design: RNA-sequencing was conducted to identify the transcriptomic profiling of iPSC-derived cells
Verification and rectification of cell type-specific splicing of a Seckel syndrome-associated ATR mutation using iPS cell model.
Specimen part, Subject
View SamplesPurpose: The goals of this study are to investigate the molecular mechanism by which MEIS1 controls megakaryocytic maturation and thrombopoiesis through compareing the mRNA profiling of Wild Type and MEIS1 deleted H1 drived cells at day6 of megakaryocytic differentiation. Overall design: Methods: mRNA profiles of Wild Type and MEIS1 deleted H1 drived cells at day6 of megakaryocytic differentiation. were generated by deep sequencing. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR Green assays
MEIS1 Regulates Hemogenic Endothelial Generation, Megakaryopoiesis, and Thrombopoiesis in Human Pluripotent Stem Cells by Targeting TAL1 and FLI1.
Cell line, Subject
View SamplesClinical score and transcript abundance patterns identify Kawasaki disease patients who may benefit from addition of methylprednisolone.
Clinical score and transcript abundance patterns identify Kawasaki disease patients who may benefit from addition of methylprednisolone.
Specimen part, Treatment, Subject, Time
View SamplesHematopoietic cells arise from spatiotemporally restricted domains in the developing embryo. Although studies of non-mammalian animal and in vitro embryonic stem cell models suggest a close relationship among cardiac, endocardial, and hematopoietic lineages, it remains unknown whether the mammalian heart tube serves as a hemogenic organ akin to the dorsal aorta. Here, we examined the hemogenic activity of the developing endocardium. Mouse heart explants generated myeloid and erythroid colonies in the absence of circulation. Hemogenic activity arose from a subset of endocardial cells in the outflow cushion and atria earlier than in the aorta-gonad-mesonephros region, and was transient and definitive in nature. Interestingly, key cardiac transcription factors, Nkx2-5 and Isl1, were expressed in and required for the hemogenic activity of the endocardium. Together, these data suggest that a subset of endocardial and yolk sac endothelial cells expressing cardiac markers serve as a de novo source for transient definitive hematopoietic progenitors.
Haemogenic endocardium contributes to transient definitive haematopoiesis.
Specimen part
View Samples