We demonstrate that the catalytic subunit of Polycomb Repressive Complex 2, EZH2, is targeted by the MELK-FOXM1 complex, which in turn promotes resistance to radiation in GSCs. Clinically, EZH2 and MELK are co-expressed in GBM and significantly induced in post-irradiation recurrent tumors whose expression inversely correlated with patient prognosis. Through gain-and loss-of-function study, our data show that MELK or FOXM1 contributes on GSC radioresistance by regulation of EZH2.
EZH2 protects glioma stem cells from radiation-induced cell death in a MELK/FOXM1-dependent manner.
Specimen part, Cell line
View SamplesOur previous study using nude rats revealed that the parental JDCaP xenografts predominantly expressed full-length androgen receptor (AR) whereas the relapsed JDCaP xenografts after castration acquired AR splice variants including AR-V7 and ARv567es. To understand molecular mechanisms underlying the acquisition of AR splice variants in the JDCaP model, we performed microarray analysis using RNA samples of the xenografts without castration (Parent), the relapsed xenografts overexpressing full-length AR and AR-V7 (ARhiV7hi), and the relapsed xenografts expressing ARv567es (ARv567es).
The RNA helicase DDX39B and its paralog DDX39A regulate androgen receptor splice variant AR-V7 generation.
Specimen part
View SamplesAtrial specific knockout of Nkx2-5 results in hyperplastic atria with ASD and conduction defects. To examine how Nkx2-5 regulates cardiac proliferation at late gestational stages, RNA-seq was performed. Overall design: Examination of expression profile of 2 Nkx2-5-null atria and 3 controls
Nkx2-5 suppresses the proliferation of atrial myocytes and conduction system.
No sample metadata fields
View SamplesGlobal DNA hypomethylation and DNA hypermethylation of promoter regionsincluding tumor suppressor genesare frequently detected in human cancers. Although many studies have suggested a contribution to carcinogenesis, it is still unclear whether the aberrant DNA hypomethylation observed in tumors is a consequence or a cause of cancer. We found that overexpression of Stella (also known as PGC7, Dppa3), a maternal factor required for the maintenance of DNA methylation in early embryos, induced global DNA hypomethylation and transformation in NIH3T3 cells. This hypomethylation was due to the binding of Stella to Np95 (also known as Uhrf1, ICBP90) and the subsequent impairment of Dnmt1 localization. In addition, enforced expression of Stella enhanced the metastatic ability of B16 melanoma cells through the induction of metastasis-related genes by inducing DNA hypomethylation of their promoter regions. Such DNA hypomethylation itself causes cellular transformation and metastatic ability. These data provide new insight into the function of global DNA hypomethylation in carcinogenesis.
Global DNA hypomethylation coupled to cellular transformation and metastatic ability.
Cell line
View SamplesPulmonary dendritic cells are heterogenous cells comprise four distinct subsets including two conventional dendritic cell subsets, CD103+ and CD11bhiCD14lo cells, and two monocyte-derived dendritic cell subsets. Their functions in terms of migration and T cell activation are distinct, but genes regulating their features are to be determined.
Complement receptor C5aR1/CD88 and dipeptidyl peptidase-4/CD26 define distinct hematopoietic lineages of dendritic cells.
Sex, Specimen part
View SamplesHematopoietic cells arise from spatiotemporally restricted domains in the developing embryo. Although studies of non-mammalian animal and in vitro embryonic stem cell models suggest a close relationship among cardiac, endocardial, and hematopoietic lineages, it remains unknown whether the mammalian heart tube serves as a hemogenic organ akin to the dorsal aorta. Here, we examined the hemogenic activity of the developing endocardium. Mouse heart explants generated myeloid and erythroid colonies in the absence of circulation. Hemogenic activity arose from a subset of endocardial cells in the outflow cushion and atria earlier than in the aorta-gonad-mesonephros region, and was transient and definitive in nature. Interestingly, key cardiac transcription factors, Nkx2-5 and Isl1, were expressed in and required for the hemogenic activity of the endocardium. Together, these data suggest that a subset of endocardial and yolk sac endothelial cells expressing cardiac markers serve as a de novo source for transient definitive hematopoietic progenitors.
Haemogenic endocardium contributes to transient definitive haematopoiesis.
Specimen part
View SamplesTransition from primed to naive pluripotency is associated with dynamic changes in transposable element (TE) expression and demethylation of imprinting control regions (ICRs). In mouse, ICR methylation and TE expression are each regulated by TRIM28; however, the role of TRIM28 in humans is less clear. Here, we show that a null mutation in TRIM28 causes significant alterations in TE expression in both the naive and primed states of human pluripotency, and phenotypically this has limited effects on self-renewal, instead causing a loss of germline competency. Furthermore, we discovered that TRIM28 regulates paternal ICR methylation and chromatin accessibility in the primed state, with no effects on maternal ICRs. Taken together, our study shows that abnormal TE expression is tolerated by self-renewing human pluripotent cells, whereas germline competency is not. Overall design: Examination of transcription, DNA methylation and chromatin accessibility of human ES cells for wild type and Trim28 knockout.
TRIM28-Regulated Transposon Repression Is Required for Human Germline Competency and Not Primed or Naive Human Pluripotency.
No sample metadata fields
View SamplesWe analyzed the global transcriptome signature over the time course of the cardiac differentiation from hESC by RNA-seq. We characterized the genome-wide transcriptome profile of 5 distinct stages; undifferentiated hESC (day 0), mesodermal precursor stage (hMP, day 2), cardiac progenitor stage (hCP, day 5), immature cardiomyocyte (hCM14) and hESC-CMS differentiated for 14 additional days (hCM28). While the stem cell signature decreases over the five stages, the signatures associated with heart and smooth muscle development increase, indicating the efficient cardiac differentiation of our protocol. Overall design: Five different temporal samples, two replicates for only first four samples day 0 through day 15
Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis.
Specimen part, Subject
View SamplesBy chemical modulation of the PKA/CREB and BMP pathways in isolated AGM VE-cadherin+ cells from mid-gestation embryos, we demonstrate that PKA/CREB regulates hematopoietic engraftment and clonogenicity of hematopoietic progenitors and is dependent on secreted BMP ligands through the type I BMP receptor.
Flow-induced protein kinase A-CREB pathway acts via BMP signaling to promote HSC emergence.
Specimen part
View SamplesWakame is an edible seaweed that is a common constituent in the Japanese diet. Previous studies showed that wakame consumption is associated with prevention of metabolic syndrome; however, the molecular mechanisms of this protective effect are poorly understood. To determine if the expression of hepatic genes is affected by the ingestion of brown seaweed, Undaria pinnatifida (wakame), rats were fed diets containing 0, 0.1, or 1.0 g/100 g dried wakame powder for 28 days. Administration of 1% wakame significantly decreased total serum total cholesterol levels. Hepatic gene expression was investigated using DNA microarray analysis. Microarray analysis showed that wakame suppresses the lipogenic pathway by downregulating SREBF-1. Moreover, bile acid biosynthesis and gluconeogenesis are promoted by upregulation of the PPAR signaling pathway, which leads to a reduction in the accumulation of cholesterol and promotion of -oxidation. These results provide useful genetic information about various biochemical processes by which wakame regulates energy metabolism.
Oral Administration of Edible Seaweed Undaria Pinnatifida (Wakame) Modifies Glucose and Lipid Metabolism in Rats: A DNA Microarray Analysis.
Sex, Age, Specimen part
View Samples