MYB-bHLH-TTG1 regulates Arabidopsis seed coat biosynthesis pathways directly and indirectly via multiple tiers of transcription factors
MYB-bHLH-TTG1 Regulates Arabidopsis Seed Coat Biosynthesis Pathways Directly and Indirectly via Multiple Tiers of Transcription Factors.
Specimen part
View SamplesThe MYB gene family encodes transcription factors with a diverse range of functions in Arabidopsis. This study demonstrated that MYB5, which is expressed in trichomes and seeds, plays a central role in trichome and seed development. A microarray analysis of myb5 seeds identified other members of the MYB5 regulatory network.
The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis.
No sample metadata fields
View SamplesA complex network of inflammation succeeds somatic cell transformation and malignant disease. Immune cells and their associated molecules are responsible for detecting and eliminating cancer cells as they establish themselves as the precursors of a tumour. By the time a patient has a detectable solid tumour, cancer cells have escaped the initial immune response mechanisms. To date, no model exists to allow us to study the underlying mechanisms that govern the initial phase of the immune response as cells are transformed to become the precursors of cancer. Here we describe the development of an innovative double binary animal model designed in zebrafish for exploring regulatory programming of the myeloid cells as they respond to oncogenic transformed melanocytes. This modular system harnesses the power of zebrafish genetics. For studies of melanocyte transformation we generated a hormone-inducible binary system allowing for temporal control of different Ras-oncogene (NRasK61Q, HRasG12V, KRasG12V) expression in melanocytes allowing us to truly study melanoma initiation. This binary model was then coupled to a model for regulatory profiling of the active transcriptome of macrophages and neutrophils which is based on the in vivo biotinylation of nuclei and their subsequent isolation by streptavidin affinity purification. For the first time regulatory profiling of neutrophils as they respond to the earliest precursors of melanoma, revealed a number of factors upregulated in neutrophils that may promote progression to melanoma including fgf1, fgf6, cathepsin H, cathepsin L, galectin 1 and galectin 3. Overall design: We report the design of a double binary approach in zebrafish to study the neutrophil response to transformed melanocytes. By coupling a novel inducible model for melanocyte transformation to a model for the in vivo biotinylation of neutrophil nuclei we can isolate the neutrophil nuclei directly from the in vivo context allowing for RNA-seq analysis of the active transcriptome.
Generation of a double binary transgenic zebrafish model to study myeloid gene regulation in response to oncogene activation in melanocytes.
Specimen part, Cell line, Treatment, Subject
View SamplesDentatorubral-pallidoluysian Atrophy (DRPLA) is a human polyQ disease caused by the expansion of a CAG strech in the atrophin-1 (at-1) gene. In all vertebrates, a second atrophin gene (at-2) is present and it encodes a related protein void of polyQ tracks. In D.melanogaster there is one conserved Atrophin (Atro) gene, ubiquitously expressed, which contains all functional domains of vertebrate Atrophins, including two polyQ stretches. To understand to what extent transcriptional alterations cause neurodegeneration and are linked to the normal functions of Atrophin, we performed a genome wide transcriptional profiling in our Drosophila models, focusing on primary events that precede neurodegeneration.
Polyglutamine Atrophin provokes neurodegeneration in Drosophila by repressing fat.
No sample metadata fields
View SamplesCD1d expression by thymocytes is required to select iNKT cells. When CD1d is expressed only on thymocytes (pLck-CD1d tg mice), iNKT cells are hyperresponsive to antigen stimulation suggesting that, in physiological conditions, these cells undergo functional education mediated by additional CD1d-expressing cells. Here, we investigated the mechanisms of this functional education. We find that peripheral iNKT cells from pLck-CD1d tg mice express significantly less SHP-1, a tyrosine phosphatase negatively regulating TCR signaling, than WT cells. iNKT cells from heterozygous SHP-1-mutated motheaten mice, displaying similar SHP-1 reduction as pLck-CD1d tg iNKT cells, are antigen-hyperresponsive. Restoring normal CD1d expression in pLck-CD1d tg mice normalizes SHP-1 expression and responsiveness of iNKT cells. In WT mice, iNKT cells upregulate SHP-1 and decrease responsiveness upon emigration from thymus to periphery. This depends on contacts with CD1d-expressing DCs. iNKT cell functional education is therefore controlled by DCs via tuning SHP-1 expression level in the periphery.
Functional education of invariant NKT cells by dendritic cell tuning of SHP-1.
Age, Specimen part, Treatment
View SamplesMammary gland development is fueled by stem cell self-renewal and differentiation. External cues from the microenvironment coupled with internal cues such as post-transcriptional regulation exerted by miRNAs regulate stem cell behavior and stem cell fate. We have identified a miR205 regulatory network required for mammary gland morphogenesis and stem cell maintenance. In the postnatal mammary gland, miR205 is predominantly expressed in the basal/stem cell enriched population. Conditional deletion of miR205 in mammary epithelial cells severely impaired stem cell self-renewal and mammary repopulating potential both in vitro and in vivo. miR205 null glands displayed significant changes in the basal population, basement membrane and stroma. NKD1 and PP2A-B56, which inhibit the Wnt signaling pathway, and AMOT, which causes YAP cytoplasmic retention and inactivation were identified as miR205 downstream effectors. Collectively these findings reveal an essential role of miR205 in mammary gland development. Overall design: WT;RosamTmG/mTmG and miR-205fl/fl;RosamTmG/mTmG cells were treated with Ad-cre and transplanted back to 3-wk-old SCID-Beige mice. Mammary epithelial cell (MECs) were isolated from pooled 40 WT;RosamTmG/mTmG cre+ and miR-205fl/fl;RosamTmG/mTmG cre+ outgrowths after 8 weeks. GFP+ basal cells (CD24+CD49fhigh) were further sorted from MECs of each group and RNA-seq were performed on WT and miR205fl/fl cre+ green basal cells to look for differentially expressed genes.
miR-205 Regulates Basal Cell Identity and Stem Cell Regenerative Potential During Mammary Reconstitution.
Specimen part, Subject
View SamplesThe knowledge of an expression network signature in end-stage heart failure (HF) diseased hearts may offer important insights into the complex pathogenesis of advanced cardiac failure, as well as it may provide potential targets for therapeutic intervention. In this study, the NGS sequencing of RNA (RNA-Seq) method was employed to obtain the whole transcriptome of cardiac tissues from transplant recipients with advanced stage of HF. The analysis of RNA-Seq data presents novel challenges and many methods have been developed for the purpose of mapping reads to genomic features and quantifying gene expression. The main goal of this work was to identify, characterize and catalogue all the transcripts expressed within cardiac tissue and to quantify the differential expression of transcripts in both physio- and pathological conditions through whole transcriptome analyses. Expression levels, differential splicing, allele-specific expression, RNA editing and fusion transcripts constitute important information when comparing samples for disease related studies. Analysis methods for RNA-Seq data are continuing to evolve. Thus, in order to find the best solution for filter generated list of differentially expressed genes, an informatic approach of NOISeq BIO method has been applied in this RNA-Seq analysis. Most of the genes obtained by filtering differentially expressed gene list, have been experimentally validated by Real time RT-PCR. Noteworthy, these findings provide valuable resources for further studies of the molecular mechanisms involved in heart ischemic response thus leading to potential novel biomarkers and targets for therapeutic intervention in the onset and progression of cardiomyopathies. Overall design: Heart biopsies from candidates for solid organ transplantation were collected and their RNA samples were used for high-throughput sequencing purposes. Libraries were sequenced on the Illumina HiSeq2000 NGS platform.
Heart failure: Pilot transcriptomic analysis of cardiac tissue by RNA-sequencing.
No sample metadata fields
View SamplesIn order to identify the effects of TFEB overexpression on the hela cells transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the hela TFEB stable clones
TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy.
Cell line
View SamplesNon-typhoidal Salmonella (NTS) are among of the most important food-borne pathogens. Recently, a highly invasive multi-drug resistant S. Typhimurium of a distinct multilocus sequence type (MLST), ST313, has emerged across sub-Saharan Africa as a major cause of lethal bacteraemia in children and immunosuppressed adults. Encounters between dendritic cells (DCs) and invading bacteria determine the course of infection but whether or how ST313 might usurp DC mediated defence has not been reported. Here we utilised fluorescently labelled invasive and non-invasive strains of Salmonella combined with single-cell RNA sequencing to study the transcriptomes of individual infected and bystander DCs. The transcriptomes displayed a repertoire of cell instrinsic and extrinsic innate response states that differed between invasive and non-invasive strains. Gene expression heterogeneity was increased in DCs challenged with invasive Salmonella. DCs exposed but not harbouring invasive Salmonella exhibited a hyper-activated profile that likely facilitates trafficking of infected cells and dissemination of internalised intact bacteria. In contrast, invasive Salmonella containing DCs demonstrate reprogramming of trafficking genes required to avoid autophagic destruction. Furthermore, these cells displayed differential expression of tolerogenic IL10 and MARCH1 enabling CD83 mediated adaptive immune evasion. Altogether our data illustrate pathogen cell-to cell variability directed by a Salmonella invasive strain highlighting potential mechanisms of host adaption with implications for dissemination in vivo. Overall design: Single-cell RNA sequencing (SMARTSeq2) of 373 human monocyte derived dendritic cells infected with S. Typhimurium strain LT2 or D23580 or left uninfected
Invasive Salmonella exploits divergent immune evasion strategies in infected and bystander dendritic cell subsets.
Subject, Time
View SamplesNon-typhoidal Salmonella (NTS) are among of the most important food-borne pathogens. Recently, a highly invasive multi-drug resistant S. Typhimurium of a distinct multilocus sequence type (MLST), ST313, has emerged across sub-Saharan Africa as a major cause of lethal bacteraemia in children and immunosuppressed adults. Encounters between dendritic cells (DCs) and invading bacteria determine the course of infection but whether or how ST313 might usurp DC mediated defence has not been reported. Here we utilised fluorescently labelled invasive and non-invasive strains of Salmonella combined with single-cell RNA sequencing to study the transcriptomes of individual infected and bystander DCs. The transcriptomes displayed a repertoire of cell instrinsic and extrinsic innate response states that differed between invasive and non-invasive strains. Gene expression heterogeneity was increased in DCs challenged with invasive Salmonella. DCs exposed but not harbouring invasive Salmonella exhibited a hyper-activated profile that likely facilitates trafficking of infected cells and dissemination of internalised intact bacteria. In contrast, invasive Salmonella containing DCs demonstrate reprogramming of trafficking genes required to avoid autophagic destruction. Furthermore, these cells displayed differential expression of tolerogenic IL10 and MARCH1 enabling CD83 mediated adaptive immune evasion. Altogether our data illustrate pathogen cell-to cell variability directed by a Salmonella invasive strain highlighting potential mechanisms of host adaption with implications for dissemination in vivo. Overall design: RNA-seq of mini-bulks (5000 cells) of human monocyte derived dendritic cells infected with S. Typhimurium strain LT2 or D23580 or left uninfected
Invasive Salmonella exploits divergent immune evasion strategies in infected and bystander dendritic cell subsets.
Subject, Time
View Samples