To elucidate the fundamental molecular mechanisms responsible for multistep hepatotumorigenesis, this study investigated genes that were upregulated in a stepwise manner from the nave liver condition through to chronic oxidative stress-induced hepatitis and liver tumor by time-series microarray analysis. The time-dependent gene expression profile should reflect the multistep process of hepatotumorigenesis, and might identify genes that function specifically in hepatotumorigenesis.
IQGAP1 and vimentin are key regulator genes in naturally occurring hepatotumorigenesis induced by oxidative stress.
Sex, Age, Specimen part, Disease
View SamplesNeural stem cells (NSCs) are considered to be the cell-of-origin of brain tumor stem cells. To identify the genetic pathways responsible for the transformation of normal NSCs to brain-tumor-initiating cells, we used Sleeping Beauty (SB) transposons, to mutagenize NSCs. Mobilized SB transposons induced the immortalization of NSCs. Immortalized NSCs induced tumors upon subcutaneous transplantation in immunocompromized mice. To further classify the immortalized cells and mouse tumors, we performed Gene Set Enrichment Analysis (GSEA) using DNA microarray data.
Transposon mutagenesis identifies genes that transform neural stem cells into glioma-initiating cells.
Specimen part
View SamplesGenome-wide association studies (GWAS) have identified dozens of genomic loci, whose single nucleotide polymorphisms (SNPs) predispose to prostate cancer (PCa). However, the biological functions of these common genetic variants and the mechanisms to increase disease risk are largely unknown. We integrated chromatin-IP coupled sequencing (ChIP-seq) and microarray expression profiling in the TMPRSS2-ERG gene rearrangement positive DuCaP cell model with the NHGRI GWAS PCa risk SNPs catalog, in an attempt to identify disease susceptibility SNPs localized within functional androgen receptor binding sites (ARBSs). Among the 48 GWAS index SNPs and 2,702 linked SNPs defined by the 1000G project 104 were found to be localized in the AR ChIP-seq peaks. Of these risk SNPs, rs11891426 T/G in the 7th intron of its host gene melanophilin (MLPH) was found located within a putative auxiliary ARE motif, which we found enriched in the neighborhood of canonical ARE motifs. Exchange of T to G attenuated the transcriptional activity of the MLPH-ARBS in a reporter gene assay. The expression of MLPH protein in tissue samples from prostate cancer patients was significantly lower in those with the G compared to the T allele. Moreover, a significant positive correlation of AR and MLPH protein expression levels was also confirmed in tissue samples. These results unravel a hidden link between AR and a functional PCa risk SNP rs11891426, whose allele alteration affects androgen regulation of its host gene MLPH. This study shows the power of integrative studies to pin down functional risk SNPs and justifies further investigations.
Putative Prostate Cancer Risk SNP in an Androgen Receptor-Binding Site of the Melanophilin Gene Illustrates Enrichment of Risk SNPs in Androgen Receptor Target Sites.
Cell line, Treatment, Time
View SamplesIn depth temporal profiling of transcript changes at 10 time points during germination in Arabidopsis seed was carried out. The time course utilised, encompassed seed maturation, stratification, germination and post-germination and provided a global investigation into the tightly regulated, phasic changes that define seed germination.
In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis.
Specimen part, Disease, Time
View SamplesIn response to bacterial infection, early transcriptional re-programming occurs in the host plant.
Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress.
Specimen part
View SamplesIn response to WRKY40 and WRKY60 perturbation (and high light stress), significant transcriptional re-programming occurs particularly for genes encoding stress responsive mitochondrial and choloplast proteins.
AtWRKY40 and AtWRKY63 modulate the expression of stress-responsive nuclear genes encoding mitochondrial and chloroplast proteins.
Specimen part, Treatment
View SamplesTranscript abundance profiles were examined over the first 24 hours of germination in rice grown under aerobic conditions.
Experimental analysis of the rice mitochondrial proteome, its biogenesis, and heterogeneity.
Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation.
Sex, Cell line, Treatment
View SamplesThe expansion of repressive epigenetic marks has been implicated in heterochromatin formation during embryonic development, but the general applicability of this mechanism is unclear. Here we show that nuclear rearrangement of repressive histone marks H3K9me3 and H3K27me3 into non-overlapping structural layers characterizes senescence-associated heterochromatic foci (SAHF) formation in human fibroblasts. However, the global landscape of these repressive marks remains unchanged upon SAHF formation, suggesting that in somatic cells heterochromatin can be formed through the spatial repositioning of pre-existing repressively marked histones. This model is reinforced by the correlation of pre-senescent replication timing with both the subsequent layered structure of SAHFs and the global landscape of the repressive marks, allowing us to integrate microscopic and genomic information. Furthermore, modulation of SAHF structure does not affect the occupancy of these repressive marks nor vice versa. These experiments reveal that high-order heterochromatin formation and epigenetic remodeling of the genome can be discrete events.
Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation.
Sex, Cell line, Treatment
View SamplesGene expression profiles in soybean seeds at 4 developmental stages, pod, bean 2 mm, bean 5 mm, and full-sized bean, were examined by DNA microarray analysis. Total genes of each samples were classified into 4 clusters according to developmental stages. Differentially expressed genes (DEGs) were extracted by comparing their expression in two adjacent stages, by using the rank product method.
Global gene expression profiles in developing soybean seeds.
No sample metadata fields
View Samples