Erlotinib is a tyrosine kinase inhibitor (TKI) that is approved as a second-line monotherapy in patients with advanced non-small cell lung cancer (NSCLC). In these patients, erlotinib prolongs survival but its benefit remains modest since many tumors express wild-type EGF receptor (wtEGFR) lacking a TKI-sensitizing mutation, develop a second-site EGFR mutation, e.g., EGFR-L858R/T790M, or activate an alternate receptor tyrosine kinase, e.g., through MET amplification. To test potential drug combinations that could improve the efficacy of erlotinib, we combined erlotinib with quinacrine, which inhibits the FACT (facilitates chromatin transcription) complex that is required for nuclear factor-B (NF-B) transcriptional activity. In A549 (wtEGFR), H1975 (EGFR-L858R/T790M) and H1993 (MET amplification) NSCLC cells, the combination of erlotinib and quinacrine was highly synergistic, as quantified by Chou-Talalay combination indices. The combination inhibited colony formation, induced cell cycle arrest and apoptosis, and slowed xenograft tumor growth. Quinacrine decreased the level of active FACT subunit SSRP1 and suppressed NF-B-dependent luciferase activity. Knockdown of SSRP1 decreased cell growth and sensitized cells to erlotinib.
Quinacrine overcomes resistance to erlotinib by inhibiting FACT, NF-κB, and cell-cycle progression in non-small cell lung cancer.
Cell line, Treatment
View SamplesWe Report the genome-wide RNA expression levels in control and schizophrenia hiPSC dervied NPC treated with neuronal media for 2 days. In total about 15,000 gene expression were detected in all samples, of which 1349 were dysregualted. Overall design: Examination, identification and comparision of mRNA expression profliles in control and schizophrenia npc
Common developmental genome deprogramming in schizophrenia - Role of Integrative Nuclear FGFR1 Signaling (INFS).
Specimen part, Subject
View SamplesWe explored the effects of dexamethasone and lenalidomide, individually and in combination, on the differentiation of primary human bone marrow progenitor cells in vitro. Both agents promote erythropoiesis, increasing the absolute number of erythroid cells produced from normal CD34+ cells and from CD34+ cells with the types of ribosome dysfunction found in DBA and del(5q) MDS. However, the drugs had distinct effects on the production of erythroid progenitor colonies; dexamethasone selectively increased the number burst-forming units-erythroid (BFU-E), while lenalidomide specifically increased colony-forming units-erythroid (CFU-E). Use of the drugs in combination demonstrates that their effects are not redundant.
Dexamethasone and lenalidomide have distinct functional effects on erythropoiesis.
Specimen part, Treatment
View SamplesWe report the genome-wide RNA expression levels in pluripotent mESC and as mESC differentiate towards a neuronal lineage in response to high levels of Retinoic Acid treatment in vitro. RNA-seq was performed to identify all RNAs expressed in both ESCs and neuronal cells. In total, In total, 14,443 expressed genes were detected, of which 1,834 were up-regulated and 1,477 down-regulated (fold change (FC) > -/+2.0 and p-value < 0.035) during RA-induced neuronal differentiation. The top down-regulated genes included members of the pluripotency core transcriptional network, including Klf4, Sox2, Oct4, Nanog, Suz12, Esrrb, Stat3 and Tcfcp2l1. The top up-regulated genes are important for neuronal differentiation (e.g. Pax3, Irx3, Rest and Foxd3) and reside in the RA-pathway (e.g. various homeobox genes), the retinoic acid receptors and the RA-degradation enzyme Cyp26a1. Overall design: Examination, identification and comparision of mRNA expression profliles in two cellular states.
Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1).
No sample metadata fields
View SamplesWe report genome-wide characterization of GATA3 binding sites in eleven well-defined developmental and effector cell types of the T lymphocyte lineage. By utilizing a conditional allele of GATA3, we investigated the impact of GATA3 expression on the mRNA expression patterns in several of these cell types. Correlation of GATA3 binding with gene expression changes indicates that GATA3 regulates a large number of stage- and cell-specific genes involved in multiple signaling and transcriptional pathways critical for T cell differentiation and immune responses. Overall design: 1) RNA-Seq: Examination of RNA transcript levels in 6 cell types in wild-type and Gata3-knockout cells. 2) ChIP-Seq: Examination of GATA3 binding sites in 11 cell types. 3) Methyl-Seq: Examination of histone modification levels in DP cells from wild-type and Gata3-knockout mice.
Genome-wide analyses of transcription factor GATA3-mediated gene regulation in distinct T cell types.
No sample metadata fields
View SamplesCC-671 has been identified as an inhibitor of Cdc2-like kinase 2 (CLK2) and TTK in direct enzyme assays. CLK2 is a member of the CLK family that phosphorylates serine- and arginine-rich (SR) proteins of the spliceosomal complex as part of a regulatory mechanism for control of pre-mRNA splicing. SR proteins are a family of small nuclear ribonucleoprotein particle (snRNP) splicing factors involved in constitutive and alternative splicing. Monitoring specific phospho-biomarkers of CLK2 demonstrated that CC-671 inhibited phosphorylation of CLK2 substrates in cancer cells with mean IC50 of 549 nM in the triple negative breast cancer (TNBC) line CAL51. In this study, RNA sequencing approach was used to quantify the impact of CC-671 treatment on gene transcription and global alternative splicing in CAL51 cells. Differential exon usage analysis demonstrated that CC-671 changed alternative splicing of many genes. In addition, different sets of genes are impacted by CC-671 at both the alternative splicing and mRNA expression. Genes impacted by alternative splicing shared a set of common pathways with genes altered by mRNA expression. This result indicates that CC-671 regulates transcription via both gene expression and alternative splicing mechanisms. Overall design: Triple negative breast cancer (TNBC) line CAL51 was grown in DMEM medium containing 10% fetal bovine serum, as recommended by vendor. The growing cells were treated by CC-671 in three biological replicates at the following concentrations and time intervals. The treatment time points were 6 hour and 24 hour. Concentration of compounds used was 3 and 10 uM. Six million cells from each treatment were harvested and RNA was isolated by RNeasy kit. Poly-A selection and strand-specific RNA library construction were performed, followed by multiplexing indexed libraries and sequencing on the HiSeq 2500 with 2x100 bp read lengths. A total of 16 samples were included in this experiment, including 4 treatment groups with three biological replicates and 2 vehicle control groups with two biological replicates
Synthetic Lethal Strategy Identifies a Potent and Selective TTK and CLK1/2 Inhibitor for Treatment of Triple-Negative Breast Cancer with a Compromised G<sub>1</sub>-S Checkpoint.
Specimen part, Cell line, Treatment, Subject
View SamplesIn depth temporal profiling of transcript changes at 10 time points during germination in Arabidopsis seed was carried out. The time course utilised, encompassed seed maturation, stratification, germination and post-germination and provided a global investigation into the tightly regulated, phasic changes that define seed germination.
In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis.
Specimen part, Disease, Time
View SamplesIn response to bacterial infection, early transcriptional re-programming occurs in the host plant.
Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress.
Specimen part
View SamplesDiamond Blackfan anemia is a congenital bone marrow failure syndrome characterized by hypoproliferative anemia, often with associated physical abnormalities. Perturbations of the ribosome appear critically important to the development of DBA, as alterations in 9 different ribosomal protein genes have been identified in multiple unrelated families, along with rarer abnormalities of additional ribosomal proteins. However, presently only 50-60% of patients have an identifiable genetic lesion by ribosomal protein gene sequencing. Using genome-wide SNP array to evaluate for regions of recurrent copy variation, we identified 2 patients with mosaic loss in the region of the the chromosome 5-deleted region involved in somatically-acquired 5q- myelodysplastic syndrome.
Diminutive somatic deletions in the 5q region lead to a phenotype atypical of classical 5q- syndrome.
Sex, Specimen part, Disease, Disease stage, Treatment
View SamplesIn response to WRKY40 and WRKY60 perturbation (and high light stress), significant transcriptional re-programming occurs particularly for genes encoding stress responsive mitochondrial and choloplast proteins.
AtWRKY40 and AtWRKY63 modulate the expression of stress-responsive nuclear genes encoding mitochondrial and chloroplast proteins.
Specimen part, Treatment
View Samples