A total number of 1,511 probe sets in the bone marrow showed at least two-fold changes with FDR < 0.05, of which 256 probe sets had over four-fold changes. A group of 63 genes in the bone marrow of NDLD mice had more than a 4-fold change with FDR < 0.0001. From 503 genes encoding proteins with ITIM motif that binds to Ptpn6, 109 were up-regulated and 83 were down-regulated.
A differential gene expression study: Ptpn6 (SHP-1)-insufficiency leads to neutrophilic dermatosis-like disease (NDLD) in mice.
Disease, Disease stage
View SamplesThe regulatory subunit of cAMP-dependent protein kinase (PKA) exists in two isoforms, RI and RII, which distinguish the PKA isozymes, type I (PKA-I) and type II (PKA-II). Evidence obtained from a variety of different experimental approaches has shown that the relative levels of type I and type II PKA in cells can play a major role in determining the balance between cell growth and differentiation. RI transfected cells exhibit hyper-proliferative growth and RII transfected cells revert to a relatively quiescent state. Profiling by microarray revealed equally profound changes in gene expression between RI, RII, and parental OVCAR cells.
Regulatory subunits of PKA define an axis of cellular proliferation/differentiation in ovarian cancer cells.
No sample metadata fields
View SamplesIn this study we investigate the role of the non-canonical SMC family protein, SmcHD1in the X inactivation. Overall design: Set of allele-specific chromatin RNA-seq experiments on female clonal inter-specific (M.m.domesticus FVB x M.m.Castaneus) MEF cell lines: wild-type MEFs, SmcHD1 MomeD1 mut MEFs (SmcHD1 null) and SmcHD1 CRISPR KO MEFs (derived from wild-type MEFs after establishemnt of X inactivation).
The non-canonical SMC protein SmcHD1 antagonises TAD formation and compartmentalisation on the inactive X chromosome.
Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNAs of the miR-290-295 Family Maintain Bivalency in Mouse Embryonic Stem Cells.
Specimen part
View SamplesDNA methylation is the net result of deposition by DNA methyltransferases (DNMT1, 3A and 3B) and removal by the Ten-Eleven Translocation 1-3 (TET1-3) family of proteins and/or passive loss by replication. The relative contribution of the individual enzymes and pathways is only partially understood. Here we comprehensively analyzed and mathematically simulated the dynamics of DNA de-methylation during the reprogramming of the hypermethylated serum-cultured mouse embryonic stem cells (ESCs) to the hypomethylated 2i-cultured ground state of mESC. We show that DNA demethylation readily occurs in TET[1-/-, 2-/-] ESCs with similar kinetics as their WT littermates. Vitamin C activation of TET causes accelerated and more profound DNA demethylation without markedly affecting reprogramming kinetics. We developed a mathematical model that highly accurately predicts the global level of 5methyl- and 5hydroxymethylcytosine during the transition. Modeling and experimental validation show that the concentration of DNMT3A and DNMT3B determines the steady state level of global DNA methylation and absence of DNMT3A/B even in continued presence of DNMT1 results in gradual loss of 5mC. Taken together, DNMT1 alone is insufficient to maintain DNA methylation but requires the action of DNMT3A/3B that act as a “dimmer switches”. Overall design: RNA-seq time series was performed during the early time phase of serum to 2i transition in the presence and absence of vitamin C (4h, 16h,24h, 32h), 1 replicate
Impairment of DNA Methylation Maintenance Is the Main Cause of Global Demethylation in Naive Embryonic Stem Cells.
No sample metadata fields
View SamplesThe protein Dicer is required for microRNA (miRNA) biogenesis. Dicer-deficient cells therefore lack almost all mature, functional miRNAs. We investigated the role of miRNAs in regulation of gene expression in mouse
MicroRNAs of the miR-290-295 Family Maintain Bivalency in Mouse Embryonic Stem Cells.
Specimen part
View SamplesDifferent osteoprogenitors (SSC, BCSP, Thy+) were sorted after 2 days of JUN induction, followed by RNA extraction and microarray analysis
Expansion of Bone Precursors through Jun as a Novel Treatment for Osteoporosis-Associated Fractures.
Specimen part
View SamplesTime course analysis of c-Jun expression at 24h resulted in upregulation of a number of well-known fibrogenesis-associated factors.
Unifying mechanism for different fibrotic diseases.
Specimen part
View SamplesBcl11b plays an important role in postnatal dentate gyrus development and adult neurogenesis. To determine its role in adult neurogenesis independant from postnatal development the Bcl11b mutation was induced at the age of 2 months.
Stability and Function of Hippocampal Mossy Fiber Synapses Depend on <i>Bcl11b/Ctip2</i>.
Specimen part
View SamplesMethamphetamine (Meth) seeking progressively increases after withdrawal (incubation of Meth craving), but the transcriptional mechanisms that contribute to this incubation are unknown. Here we used RNA-sequencing to analyze transcriptional profiles associated with incubation of Meth craving in central amygdala (CeA) and orbitofrontal cortex (OFC), two brain areas previously implicated in relapse to drug seeking. We trained rats to self-administer either saline (control condition) or Meth (10 days; 9 h/day, 0.1 mg/kg/infusion). Next, we collected brain tissue from CeA and OFC on withdrawal day 2 (when Meth seeking is low and non-incubated) and on day 35 (when Meth seeking is high and incubated), for subsequent RNA-sequencing. In CeA, we identified 10-fold more differentially expressed genes (DEGs) on withdrawal day 35 than day 2. These genes were enriched for several biological processes, including protein ubiquitination and histone methylation. In OFC, we identified many fewer expression changes than in CeA. Interestingly, there were more DEGs on withdrawal day 2 than on day 35. Several genes in OFC showed opposing expression changes on withdrawal day 2 (increase) when compared to withdrawal day 35 (decrease), which was further validated by qPCR. Our analyses highlight the CeA as a key region of transcriptional regulation associated with incubation of Meth seeking. In contrast, transcriptional regulation in OFC may contributes to Meth seeking during early withdrawal. Overall, these findings provide a unique resource of gene expression data for future studies examining transcriptional mechanisms in CeA that mediate Meth seeking after prolonged withdrawal. Overall design: Exp. 1 Genome-wide transcriptional profiling of CeA during incubation of Meth craving We performed intravenous surgeries on two groups of rats (total n=26) and trained them to self-administer either saline (n=12) or Meth (n=14) as described above in 2 independent runs. We performed live decapitation on withdrawal days 2 and 35, and collected CeA tissue for mRNA preparation. We used the extracted mRNA for library preparation and RNA-sequencing. We pooled tissue from two rats as one biological replicate. The number of biological replicates in each group was: Day 2: Saline=3, Meth=4; Day 35: Saline=3, Meth=3. Exp. 2 Genome-wide transcriptional profiling of OFC during incubation of Meth craving As above, two groups of rats (total n=32) were trained to self-administer saline (n=16) or Meth (n=16) in 2 independent runs. We performed live decapitation on withdrawal days 2 and 35, and collected OFC tissue for mRNA preparation. We used the extracted mRNA either for library preparation and RNA-sequencing or for cDNA synthesis and qPCR. We pooled tissue from two rats as one biological replicate. The number of biological replicates in each group was: Day 2: Saline=4, Meth=4; Day 35: Saline=4, Meth=4.
Genome-wide transcriptional profiling of central amygdala and orbitofrontal cortex during incubation of methamphetamine craving.
Specimen part, Cell line, Treatment, Subject
View Samples