Sudden death syndrome (SDS) caused by the fungal pathogen, Fusarium virguliforme, is a major threat to soybean production in North America. There are two major components of this disease: (i) root necrosis and (ii) foliar SDS. Root symptoms consist of root necrosis with vascular discoloration that extends upto several nodes and internodes into the stem. Foliar SDS symptom is characterized by interveinal chlorosis and necrosis in leaves which finally curl and fall off, and in severe cases by flower, pod abscission and immature seed formation. A major toxin involved in initiating foliar SDS has been identified. Nothing is known about how root necrosis develops. In order to unravel the mechanisms used by the pathogen to cause root necrosis, the transcriptome of the pathogen in infected soybean root tissues of a susceptible cultivar (Williams 82) was investigated. The transcriptomes of the germinating conidia and mycelia were also examined. Of the 14,845 predicted F. virguliforme genes, we observed that 12,017 (81%) were expressed in germinating conidial spores and 12,208 (82%) in mycelia and 10,626 (72%) in infected soybean roots. Of the 10,626 genes induced in infected roots, 224 were transcribed only following infection. Expression of several infection-induced genes encoding enzymes with oxidation-reduction properties suggests that degradation of antimicrobial compounds such as the phytoalexin, glyceollin could be important in establishing the biotrophic phase. Enzymes with hydrolytic and catalytic activities could play an important role in the transitioning of the pathogen from biotrophic to necrotrophic phase. Expression of a large number of genes encoding enzymes with catalytic and hydrolytic activities during late infection stage suggests cell wall degradation by some of these enzymes could be involved in root necrosis and establishing the necrotrophic phase in this pathogen. Overall design: RNA-seq data for Fusarium virguliforme Mont-1 germinating conidial spores, mycelia and soybean root tissue 3 and 5 days or 10 and 24 days post water incubation or infection with Fusarium virguliforme Mont-1 conidial spores. Raw data for Fusarium virguliforme Mont-1 germinating conidial spores and mycelia are not available due to server failure.
Tanscriptomic Study of the Soybean-Fusarium virguliforme Interaction Revealed a Novel Ankyrin-Repeat Containing Defense Gene, Expression of Whose during Infection Led to Enhanced Resistance to the Fungal Pathogen in Transgenic Soybean Plants.
Specimen part, Subject
View SamplesAnalysis of gene expression data in two C.elegans mutant strains: KP3293 tom-1(nu468) and KP3365 unc-43(n1186); hif-1(nu469). These results support the utility of microarray hybridizations to facilitate positional cloning.
Using microarrays to facilitate positional cloning: identification of tomosyn as an inhibitor of neurosecretion.
No sample metadata fields
View SamplesOlfactory sensory neurons express just one out of a possible ~1000 odorant receptor genes, reflecting an exquisite mode of gene regulation. In one model, once an odorant receptor is chosen for expression, other receptor genes are suppressed by a negative feedback mechanism, ensuring a stable functional identity of the sensory neuron for the lifetime of the cell. The signal transduction mechanism subserving odorant receptor gene silencing remains obscure, however. Here we demonstrate in the zebrafish that odorant receptor gene silencing is dependent on receptor activity. Moreover, we show that signaling through G protein ß? subunits is both necessary and sufficient to suppress the expression of odorant receptor genes, and likely acts through histone methylation to maintain the silenced odorant receptor genes in transcriptionally inactive heterochromatin. These results provide new insights linking receptor activity with the epigenetic mechanisms responsible for ensuring the expression of one odorant receptor per olfactory sensory neuron. Overall design: Total 6 samples were analyzed-3 controls & 3 samples
Normalization of RNA-seq data using factor analysis of control genes or samples.
No sample metadata fields
View SamplesTo uncover novel molecules involved in taste detection, we performed a microarray-based screen for genes enriched in taste neurons. Proboscis RNA from flies homozygous for a recessive poxn null mutation was compared to RNA from heterozygous controls. Poxn mutants have a transformation of labellar gustatory chemosensory bristles into mechanosensory bristles and therefore lack most or all taste neurons.
The molecular basis for water taste in Drosophila.
Sex
View SamplesMidbrain dopamine neurons project to numerous targets throughout the brain to modulate various behaviors and brain states. Within this small population of neurons exists significant heterogeneity based on physiology, circuitry, and disease susceptibility. Recent studies have shown that dopamine neurons can be subdivided based on gene expression; however, the extent to which genetic markers represent functionally relevant dopaminergic subpopulations has not been fully explored. Here we performed single-cell RNA-sequencing of mouse dopamine neurons and validated studies showing that Neurod6 and Grp are selective markers for dopaminergic subpopulations. Using a combination of multiplex fluorescent in situ hybridization, retrograde labeling, and electrophysiology in mice of both sexes, we defined the anatomy, projection targets, physiological properties, and disease vulnerability of dopamine neurons based on Grp and/or Neurod6 expression. We found that the combinatorial expression of Grp and Neurod6 defines dopaminergic subpopulations with unique features. Grp/Neurod6 dopamine neurons reside in the ventromedial VTA, send projections to the medial shell of the nucleus accumbens, and have noncanonical physiological properties. Grp/Neurod6- DA neurons are found in the VTA as well as in the ventromedial portion of the SNc, where they project selectively to the dorsomedial striatum. Grp-/Neurod6 DA neurons represent a smaller VTA subpopulation, which is preferentially spared in a 6-OHDA model of Parkinson's disease. Together, our work provides detailed characterization of Neurod6 and Grp expression in the midbrain and generates new insights into how these markers define functionally relevant dopaminergic subpopulations with distinct projection patterns, physiology, and disease vulnerability. Overall design: We collected a total of 384 neurons from 8 different p26-p34 DAT-Cre::Ai9 mice (6 male 2 female) to isolate DA neurons. RNA was captured from each samples neurons on separate fluidigm chips then all samples were pooled before sequencing.
Combinatorial Expression of <i>Grp</i> and <i>Neurod6</i> Defines Dopamine Neuron Populations with Distinct Projection Patterns and Disease Vulnerability.
Sex, Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Analysis of gene expression during neurite outgrowth and regeneration.
Specimen part, Treatment
View SamplesWe have undertaken a genome-wide study of transcriptional activity in embryonic superior cervical ganglia (SCG) and dorsal root ganglia (DRG) during a time course of neurite outgrowth in vitro. Gene expression observed in these models likely includes both developmental gene expression patterns and regenerative responses to axotomy, which occurs as the result of tissue dissection. Comparison across both models revealed many genes with similar gene expression patterns during neurite outgrowth. These patterns were minimally affected by exposure to the potent inhibitory cue Semaphorin3A, indicating that this extrinsic cue does not exert major effects at the level of nuclear transcription. We also compared our data to several published studies of DRG and SCG gene expression in animal models of regeneration, and found the expression of a large number of genes in common between neurite outgrowth in vitro and regeneration in vivo.
Analysis of gene expression during neurite outgrowth and regeneration.
Specimen part, Treatment
View SamplesWe have undertaken a genome-wide study of transcriptional activity in embryonic superior cervical ganglia (SCG) and dorsal root ganglia (DRG) during a time course of neurite outgrowth in vitro. Gene expression observed in these models likely includes both developmental gene expression patterns and regenerative responses to axotomy, which occurs as the result of tissue dissection. Comparison across both models revealed many genes with similar gene expression patterns during neurite outgrowth. These patterns were minimally affected by exposure to the potent inhibitory cue Semaphorin3A, indicating that this extrinsic cue does not exert major effects at the level of nuclear transcription. We also compared our data to several published studies of DRG and SCG gene expression in animal models of regeneration, and found the expression of a large number of genes in common between neurite outgrowth in vitro and regeneration in vivo.
Analysis of gene expression during neurite outgrowth and regeneration.
Specimen part, Treatment
View SamplesWe have undertaken a genome-wide study of transcriptional activity in embryonic superior cervical ganglia (SCG) and dorsal root ganglia (DRG) during a time course of neurite outgrowth in vitro. Gene expression observed in these models likely includes both developmental gene expression patterns and regenerative responses to axotomy, which occurs as the result of tissue dissection. Comparison across both models revealed many genes with similar gene expression patterns during neurite outgrowth. These patterns were minimally affected by exposure to the potent inhibitory cue Semaphorin3A, indicating that this extrinsic cue does not exert major effects at the level of nuclear transcription. We also compared our data to several published studies of DRG and SCG gene expression in animal models of regeneration, and found the expression of a large number of genes in common between neurite outgrowth in vitro and regeneration in vivo.
Analysis of gene expression during neurite outgrowth and regeneration.
Specimen part, Treatment
View SamplesNasopharyngeal carcinoma (NPC) is a prevalent malignancyt disease in Southeast Asia among the Chinese population. Aberrant regulation of transcripts has been implicated in many types of cancers including NPC. Herein, we characterized mRNA and miRNA transcriptomes by RNA sequencing (RNASeq) of NPC model systems. Overall design: Matched total mRNA and small RNA of undifferentiated Epstein-Barr virus (EBV)-positive NPC xenograft X666 and its derived cell line C666, well-differentiated NPC cell line HK1, and the immortalized nasopharyngeal epithelial cell line NP460 have been sequenced by Solexa technology.
Integrated mRNA and microRNA transcriptome sequencing characterizes sequence variants and mRNA-microRNA regulatory network in nasopharyngeal carcinoma model systems.
No sample metadata fields
View Samples