Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). In sub-Saharan Africa, the high prevalence of both HIV-1 and KSHV has made KS a leading cancer in the region, associated with poor prognosis and high mortality due to late medical presentation and advanced disease stages. A better understanding of the cellular and viral transcriptome profiles during neoplastic growth will aid in the definition of biomarkers and cellular functions associated with KS tumorigenesis and progression. Our approach is to examine the transcriptome profile in actual KS lesions versus non-cancer tissues from the same individual for a total of four male African epidemic KS patients. These patients have undetectable HIV-1 plasma viral load after successful anti-retroviral therapy. Our results capture the cellular complexity of in vivo lesion environment and provide a marked contrast to those derived from in vitro monoculture models. The findings demonstrate that latency and immune modulation related functions dominate the viral gene expression pattern. Moreover, KSHV significantly affected the cellular transcriptome profile with genes involved in lipid and glucose metabolism disorder pathways being the most substantially dysregulated. Despite the implied infiltration of immune cells into the lesions as predicted by CIBERSORT, KS tumor continued to progress, suggesting immunological dysfunction in these KS patients despite control of HIV-1 viremia. Lastly, there is limited overlap of our in vivo dataset with in vitro studies, suggesting a limitation of in vitro KS models. Overall design: RNA-seq of Kaposi's sarcoma lesions and control tissues
RNA-Seq of Kaposi's sarcoma reveals alterations in glucose and lipid metabolism.
Specimen part, Subject
View SamplesAnalysis of gene expression data in two C.elegans mutant strains: KP3293 tom-1(nu468) and KP3365 unc-43(n1186); hif-1(nu469). These results support the utility of microarray hybridizations to facilitate positional cloning.
Using microarrays to facilitate positional cloning: identification of tomosyn as an inhibitor of neurosecretion.
No sample metadata fields
View SamplesOlfactory sensory neurons express just one out of a possible ~1000 odorant receptor genes, reflecting an exquisite mode of gene regulation. In one model, once an odorant receptor is chosen for expression, other receptor genes are suppressed by a negative feedback mechanism, ensuring a stable functional identity of the sensory neuron for the lifetime of the cell. The signal transduction mechanism subserving odorant receptor gene silencing remains obscure, however. Here we demonstrate in the zebrafish that odorant receptor gene silencing is dependent on receptor activity. Moreover, we show that signaling through G protein ß? subunits is both necessary and sufficient to suppress the expression of odorant receptor genes, and likely acts through histone methylation to maintain the silenced odorant receptor genes in transcriptionally inactive heterochromatin. These results provide new insights linking receptor activity with the epigenetic mechanisms responsible for ensuring the expression of one odorant receptor per olfactory sensory neuron. Overall design: Total 6 samples were analyzed-3 controls & 3 samples
Normalization of RNA-seq data using factor analysis of control genes or samples.
No sample metadata fields
View SamplesTo uncover novel molecules involved in taste detection, we performed a microarray-based screen for genes enriched in taste neurons. Proboscis RNA from flies homozygous for a recessive poxn null mutation was compared to RNA from heterozygous controls. Poxn mutants have a transformation of labellar gustatory chemosensory bristles into mechanosensory bristles and therefore lack most or all taste neurons.
The molecular basis for water taste in Drosophila.
Sex
View SamplesMidbrain dopamine neurons project to numerous targets throughout the brain to modulate various behaviors and brain states. Within this small population of neurons exists significant heterogeneity based on physiology, circuitry, and disease susceptibility. Recent studies have shown that dopamine neurons can be subdivided based on gene expression; however, the extent to which genetic markers represent functionally relevant dopaminergic subpopulations has not been fully explored. Here we performed single-cell RNA-sequencing of mouse dopamine neurons and validated studies showing that Neurod6 and Grp are selective markers for dopaminergic subpopulations. Using a combination of multiplex fluorescent in situ hybridization, retrograde labeling, and electrophysiology in mice of both sexes, we defined the anatomy, projection targets, physiological properties, and disease vulnerability of dopamine neurons based on Grp and/or Neurod6 expression. We found that the combinatorial expression of Grp and Neurod6 defines dopaminergic subpopulations with unique features. Grp/Neurod6 dopamine neurons reside in the ventromedial VTA, send projections to the medial shell of the nucleus accumbens, and have noncanonical physiological properties. Grp/Neurod6- DA neurons are found in the VTA as well as in the ventromedial portion of the SNc, where they project selectively to the dorsomedial striatum. Grp-/Neurod6 DA neurons represent a smaller VTA subpopulation, which is preferentially spared in a 6-OHDA model of Parkinson's disease. Together, our work provides detailed characterization of Neurod6 and Grp expression in the midbrain and generates new insights into how these markers define functionally relevant dopaminergic subpopulations with distinct projection patterns, physiology, and disease vulnerability. Overall design: We collected a total of 384 neurons from 8 different p26-p34 DAT-Cre::Ai9 mice (6 male 2 female) to isolate DA neurons. RNA was captured from each samples neurons on separate fluidigm chips then all samples were pooled before sequencing.
Combinatorial Expression of <i>Grp</i> and <i>Neurod6</i> Defines Dopamine Neuron Populations with Distinct Projection Patterns and Disease Vulnerability.
Sex, Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Analysis of gene expression during neurite outgrowth and regeneration.
Specimen part, Treatment
View SamplesWe have undertaken a genome-wide study of transcriptional activity in embryonic superior cervical ganglia (SCG) and dorsal root ganglia (DRG) during a time course of neurite outgrowth in vitro. Gene expression observed in these models likely includes both developmental gene expression patterns and regenerative responses to axotomy, which occurs as the result of tissue dissection. Comparison across both models revealed many genes with similar gene expression patterns during neurite outgrowth. These patterns were minimally affected by exposure to the potent inhibitory cue Semaphorin3A, indicating that this extrinsic cue does not exert major effects at the level of nuclear transcription. We also compared our data to several published studies of DRG and SCG gene expression in animal models of regeneration, and found the expression of a large number of genes in common between neurite outgrowth in vitro and regeneration in vivo.
Analysis of gene expression during neurite outgrowth and regeneration.
Specimen part, Treatment
View SamplesWe have undertaken a genome-wide study of transcriptional activity in embryonic superior cervical ganglia (SCG) and dorsal root ganglia (DRG) during a time course of neurite outgrowth in vitro. Gene expression observed in these models likely includes both developmental gene expression patterns and regenerative responses to axotomy, which occurs as the result of tissue dissection. Comparison across both models revealed many genes with similar gene expression patterns during neurite outgrowth. These patterns were minimally affected by exposure to the potent inhibitory cue Semaphorin3A, indicating that this extrinsic cue does not exert major effects at the level of nuclear transcription. We also compared our data to several published studies of DRG and SCG gene expression in animal models of regeneration, and found the expression of a large number of genes in common between neurite outgrowth in vitro and regeneration in vivo.
Analysis of gene expression during neurite outgrowth and regeneration.
Specimen part, Treatment
View SamplesWe have undertaken a genome-wide study of transcriptional activity in embryonic superior cervical ganglia (SCG) and dorsal root ganglia (DRG) during a time course of neurite outgrowth in vitro. Gene expression observed in these models likely includes both developmental gene expression patterns and regenerative responses to axotomy, which occurs as the result of tissue dissection. Comparison across both models revealed many genes with similar gene expression patterns during neurite outgrowth. These patterns were minimally affected by exposure to the potent inhibitory cue Semaphorin3A, indicating that this extrinsic cue does not exert major effects at the level of nuclear transcription. We also compared our data to several published studies of DRG and SCG gene expression in animal models of regeneration, and found the expression of a large number of genes in common between neurite outgrowth in vitro and regeneration in vivo.
Analysis of gene expression during neurite outgrowth and regeneration.
Specimen part, Treatment
View SamplesNasopharyngeal carcinoma (NPC) is a prevalent malignancyt disease in Southeast Asia among the Chinese population. Aberrant regulation of transcripts has been implicated in many types of cancers including NPC. Herein, we characterized mRNA and miRNA transcriptomes by RNA sequencing (RNASeq) of NPC model systems. Overall design: Matched total mRNA and small RNA of undifferentiated Epstein-Barr virus (EBV)-positive NPC xenograft X666 and its derived cell line C666, well-differentiated NPC cell line HK1, and the immortalized nasopharyngeal epithelial cell line NP460 have been sequenced by Solexa technology.
Integrated mRNA and microRNA transcriptome sequencing characterizes sequence variants and mRNA-microRNA regulatory network in nasopharyngeal carcinoma model systems.
No sample metadata fields
View Samples